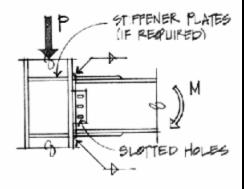

Architectural Structures I: Statics and Strength of Materials ends 231 Dr. Anne Nichols

twenty three steel connection bolts, welds & tension members


Connections 1 Lecture 23 Architectural Structures I ENDS 231

Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection. e = Eccentricity; M = $P \times e$

⁽b) Moment connection (rigid frame). M = Moment due to beam bending

Bolts

• bolted steel connections

Connections 3 Lecture 26 Architectural Structures ENDS 231

. . .

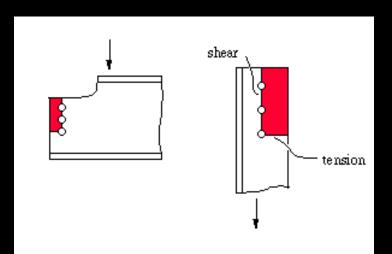
22

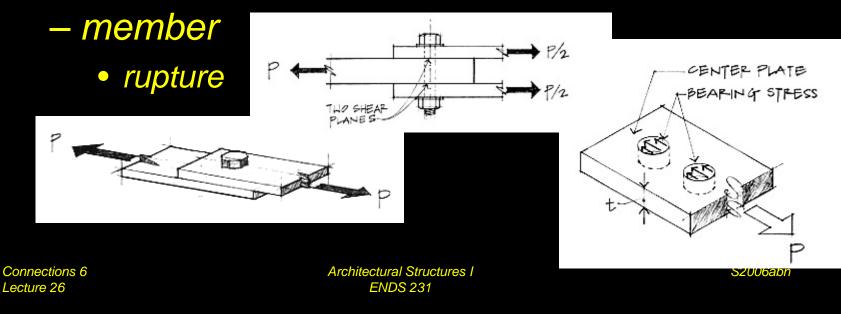
10

Welds

• welded steel connections

Connections 4 Lecture 26 Architectural Structures I ENDS 231


Fasteners


• wood connections XXXXXX O

Connections 5 Lecture 26 Architectural Structures I ENDS 231

Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double

Bolted Connection Design

ASD steel

- shear:

 $f_v \leq F_v$

- bolt strengths
- single & double
- bolt types
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X

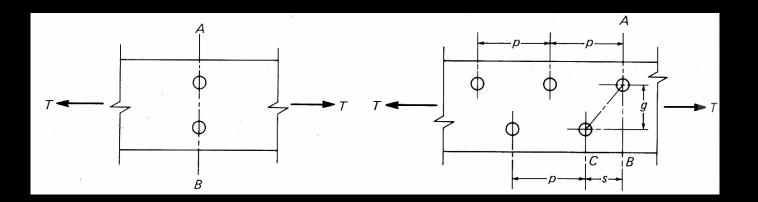
BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips

						E										
	TABLE							SHEAR								
		ASTM	Conn-				Nominal Diameter d, in.									
	ASIM Co Desig- ect			Hale	Fy	Lood-	- 38	- 34	%	1	1%	11/4	186	1%		
I		nation	Тура	Typeb	kai	inge	2000	Area (Based on Nominal Diameter) In. ²								
ł		A307	-	STD	10.0	s	.3068	.4418	.6013 6.0	.7854 7.9	.9940	1.227	1.485	1.767		
L				NSL		D	6.1	8.8	12.0	15.7	19.9	24.5	29.7	35.3		
ł			SC" Class A	STD	17.0	S D	5.22 10.4	7.51	10.2 20.4	13,4 26,7	18.9 33.8	20.9 41.7	25.2 50.5	30.0 60.1		
				OVS, SSL	15.0	SD	4.60 9.20	ALC: NO	9.02 18.0	11.8 23.6	14.9 29.8	18.4 38.8	22.3 44.6	26.5 53.0		
		A325		LSL	12.0	ş	9.68 7.36		7.22 14.4	9.42 18.8	11.9 23.9	14.7 29.4	17.8 35.6	21.2 12.4		
			N	STD, NSL	21.0	SD	8.4 12.9	9.3 18.6	12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 52.4	37.1 74.2		
	Bolts		×	STD, NSL	30.0	S D	92 18.4	13.S 26.5	18.0 36.1	23.6 47.1	29.8 59.8	96.8 73.6	44.5 89.1	53.0 106.0		
L			SC ³ Class	STD	21.0	S D	6.44 12.9	9.28 18.6	12.6 25.3	16.5 33.0	20.9 41,7	25.8 51.5	31.2 62.4	37.1 74.2		
				OVS, SSL	18.0	S D	5.52 11.0	7 95 15.9	1D.B 21.6	14.1 28.9	17.9 35.8	22.1 44.2	28.7 53.5	31.8 63.6		
		A490		LSL	15.0	8 D	4.80 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 36.6	22.3	26.5 53.0		
			N	STD, NSL	28.0	ŝ	8.6 17.2	12.4 24.7	16.8 33.7	22.0 44.0	27.8 55.7	34.4 68.7	41.6 83.2	49.5 99.0		
L			×	STD, NSL	40.0	s D	12.3 24.5	17.7 35.3	24.1 49.1	31.4 62.8	39.8 79.6	49.1 88.2	59.4 119.0	70.7 141.0		
	Tevets	A502-1	-	STD	17.5	S D	5.4 10.7	7,7 15,5	10.5 21.0	13.7 27.5	17.4 34.8	21 5 42 8	26.0 52.0	30.9 81.8		
	é	A502-2 A502-3	-	ŜTD	22.0	SD	6.7 13.5	9.7 19.4	13.2 26.5	17.3 34.6	21.9 43.7	27.0 54.0	32.7 65.9	38.9 77.7		
		A36 (<i>F_a=</i> 58 ksi)	. N	STD	9.9	ŝ D	3.0 6.1	4.4 8.7	6.0 11.9	7.8 15.6	9.8 19.7	12.1 24.3	14.7 29.4	17.5 35.0		
			X	STD	12.8	Ş	3.9	5.7	7.7	10.1	12.7	15.7	19.0	22.6		

S2006abn

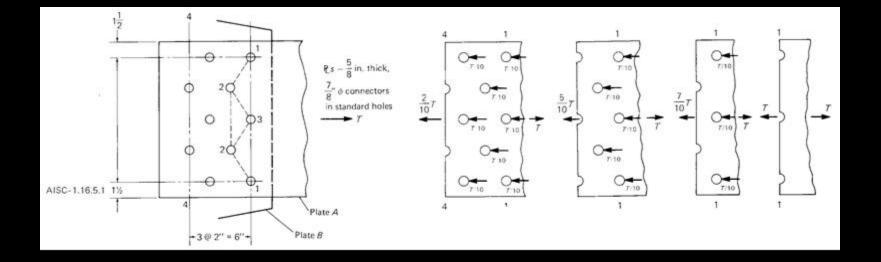
Bolted Connection Design

- ASD steel
 - bearing:
 - bolts rarely fail by bearing
 - other part fails first


BOLTS AND THREADED PARTS Bearing Allowable loads in kips

0040000

	TABLE BEARING Slip-critical and Bearing-type Connections													
Mate- rial	F _u = 58 ksi Bolt dia.			$F_o = 65 \text{ ksi}$ Bolt dia.			F _u = 70 ksl Bolt die.			F., = 100 ksl Bolt dia.				
Thick- ness	3⁄4	7/8	1	3⁄4	7/8	1	3⁄4	7⁄в	1	3⁄4	7⁄8	1		
1/8 3/18	6.5 9.8	7.6 11.4	8.7 13.1	7.3 11.0	8.5 12.8	9.6 14.6	7.9 11.8	9.2 13.8	10.5 15.8	11.3 16.9	13.1 19.7	15.0 22.5		
1/4 9/10 3/6 7/10 1/2	19.1 16.3 19.6 22.8 26.1	15.2 19.0 22.8 26.6 30.5	17.4 21.8 26.1 30.5 34.8	14.6 18.3 21.9 25.6 29.3	17.1 21.3 25.6 29.9 34.1	19.5 24.4 29.3 34.1 39.0	15.B 19.7 23.6 27.6 31.5	18.4 23.0 27.6 32.2 36.8	21.0 26.3 31.5 36.8 42.0	22.5 28.1 33.8	26.3 32.8 39.4 45.9	30.0 37.5 45.0 52.5 60.0		
72 9/18 9%8 11/18	29.4 32.6	34.3 38.1 41.9	39.2 43.5 47.9	32.9	38.4 42.7 46.9	43.9 48.8 53.8	Q 1.0	41.3 45.9	47.3 52.5 57.8					
3% 13%10 7% 19%10		45.7	52.2 55.6 60.9	•		56.5				10.0				
1	52.2	60.9	69.6	58.5	68.3	78.0	63.0	73.5	84.0	90.0	105.0	120.0		

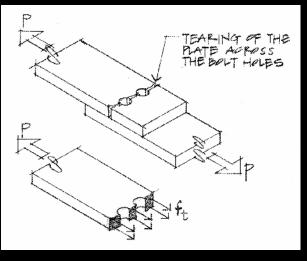

Tension Members

- steel members can have holes
- reduced area
- increased stress

Effective Net Area

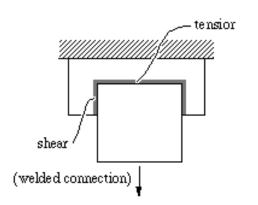
- likely path to "rip" across
- bolts divide transferred force too

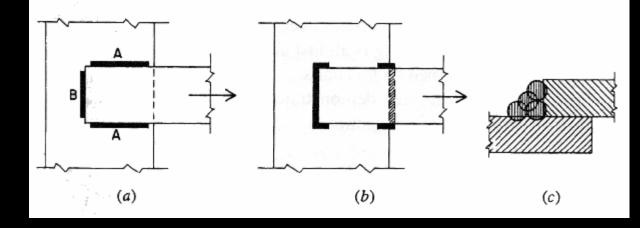
ASD – Tension Members


- non-pin connected members:
 - $-F_t = 0.60F_y$ on gross area
 - $-F_t = 0.50F_u$ on net area
- pin connected members:
 - $-F_t = 0.45F_y$ on net area
- threaded rods of approved steel:
 - $-F_t = 0.33F_u$ on major diameter
 - (for static loading only)

LRFD - Tension Members

- limit states for failure $P_u \le \phi_t P_n$ 1. yielding $\phi_t = 0.9$ $P_n = F_y A_g$
- 2. rupture* $\phi_t = 0.75$ $P_n = F_u A_e$

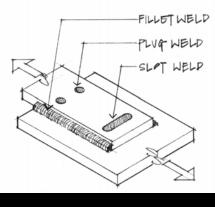

 A_g - gross area A_e - effective net area F_u - tensile strength of the steel (ultimate)

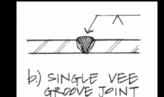


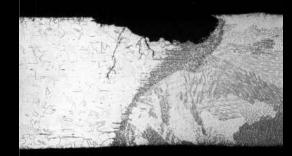
Connections 12 Lecture 26 Architectural Structures I ENDS 231

Welded Connection Design

- considerations
 - shear stress
 - yielding
 - rupture






Connections 13 Lecture 26 Architectural Structures I ENDS 231

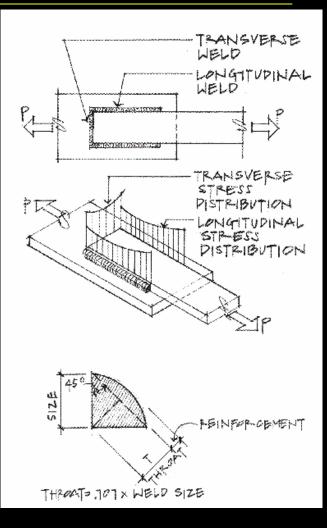
Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- weld materials
 - E60XX- E70XX $F_{EXX} = 70 \text{ ksi}$

500 µm

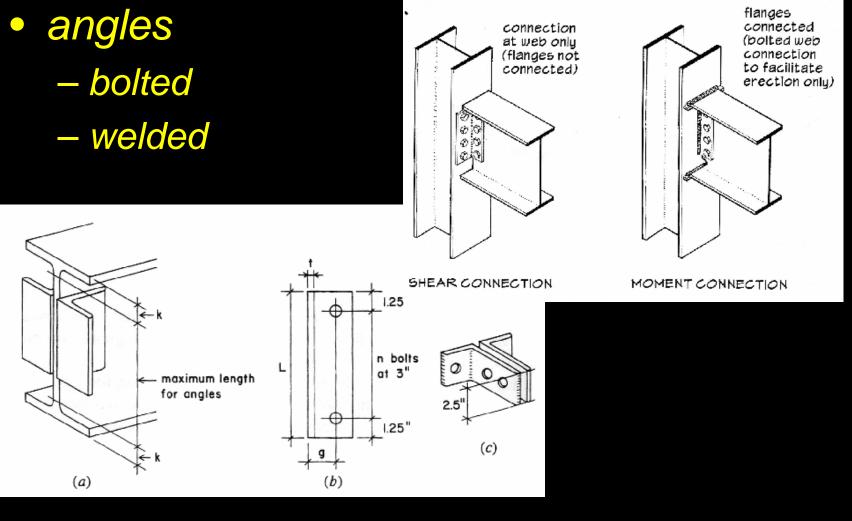
TABLE J2.4 Minimum Size of Fillet Welds								
Material Thickness of Thicker Part Joined, in. (mm)	Minimum Size of Fillet Weld[a] in. (mm)							
To $\frac{1}{4}$ (6) inclusive Over $\frac{1}{4}$ (6) to $\frac{1}{2}$ (13) Over $\frac{1}{2}$ (13) to $\frac{3}{4}$ (19) Over $\frac{3}{4}$ (19)	$ \frac{1_{8}}{1_{6}} (3) \frac{3}{1_{6}} (5) \frac{1}{4} (6) \frac{5}{1_{6}} (8) $							
 [a] Leg dimension of fillet welds. Single pass welds must [b] See Section J2.2p for maximum size of fillet welds. 	be used.							

Connections 14 Lecture 26 Architectural Structures I ENDS 231


Welded Connection Design

• ASD

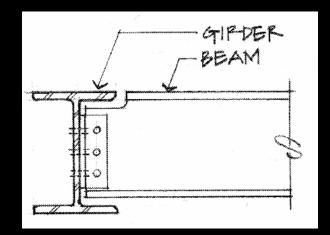
- -shear $f_v \leq F_v$
 - $F_v = 0.30F_{weld}$
- throat
 - *T* =0.707 x weld size

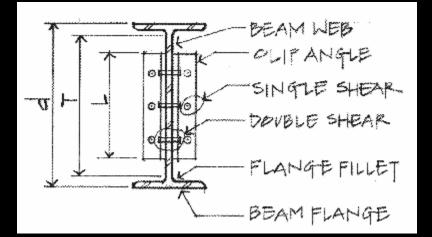

– area

- A = T x length of weld
- weld metal generally stronger than base metal (ex. $F_y = 50$ ksi)

Connections 15 Lecture 26 Architectural Structures I ENDS 231

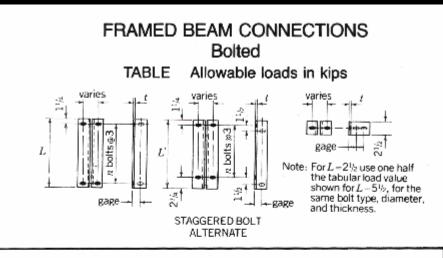
Framed Beam Connections




Connections 16 Lecture 26 Architectural Structures I ENDS 231

Framed Beam Connections

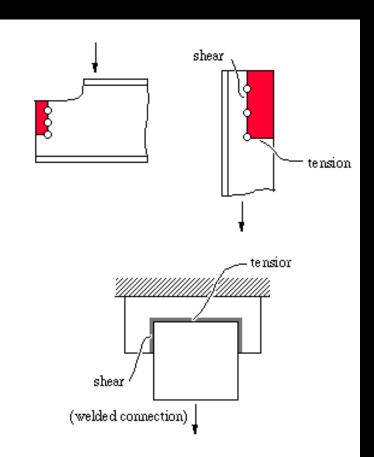
• terms


- coping

Framed Beam Connections

- tables for standard bolt holes & spacings
- *n* = # bolts
- angle leg thickness
- length needed

TABLE Bolt Shear^a For bolts in **bearing-type** connections with standard or slotted holes.


Bolt Type				A325-N			A490-N	l l		A325->	(A490-X		
F _r , Ksi			21.0			28.0			30.0			40.0			
Bolt Dia., d In.		3/4	%	1	3/4	%	1	3/4	%	1	3⁄4	%	1		
Angle Thickness <i>t</i> , In.		≯ıs	3∕a	%a	3/6	1⁄2	%	3/8	%	%	1/2	%	%		
Ĺ In.	Ľ In.	n													
29½ 26½	31 28	10 9	186 167	253 227	330 297	247 223	337 303	440 ^b 396 ^b	265 239	361 325	c c	353 318	481 433	e c	
231/2	25	8	148	202	264	198	269	352 ^b	212	289	c	283	385	c	
201/2	22	7	130	177	231	173	236	308 ^b	186	253	c	247	337	ja	
17½	19	6	111	152	198	148	202	264 ^b	159	216	283	212	289	377	
14½	16	5	92.8	126	165	124	168	220 ^b	133	180	236	177	242	314	
11½	13	4	74.2	101	132	99.0	135	176 ⁶	106 20. ch	144	188	141	192	251	

Connections 18 Lecture 26

ENDS 231

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Connections 19 Lecture 26

Beam Connections

• block shear rupture • tension rupture

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

Connections 20 Lecture 26 Architectural Structures I ENDS 231