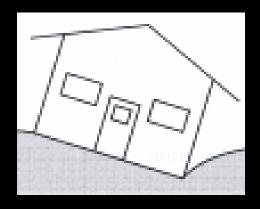
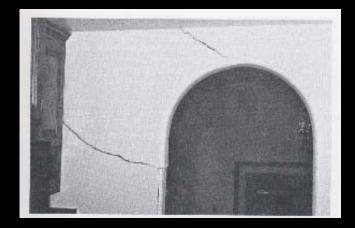

Architectural Structures I: Statics and Strength of Materials ENDS 231 Dr. Anne Nichols Summer 2006

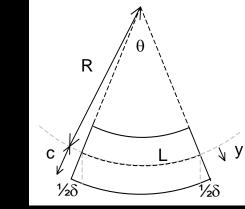



beams: deflection & design

Beam Deflection & Design 1 Lecture 18 Architectural Structures I ENDS 231

Design for Strength +...

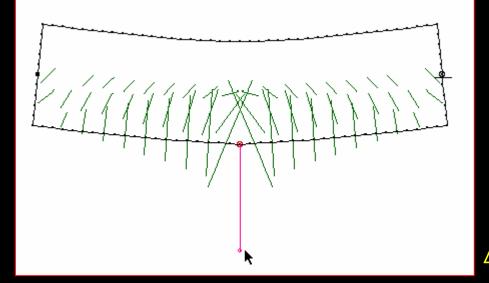
- strength design
 - forces & material
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding



Architectural Structures I ENDS 231

Beam Deformations

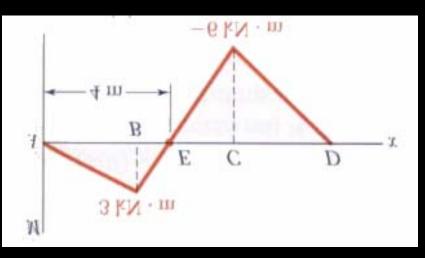
curvature relates to

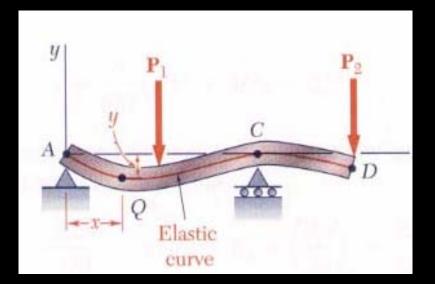

 bending moment
 modulus of elasticity
 moment of inertia

M

EI

R

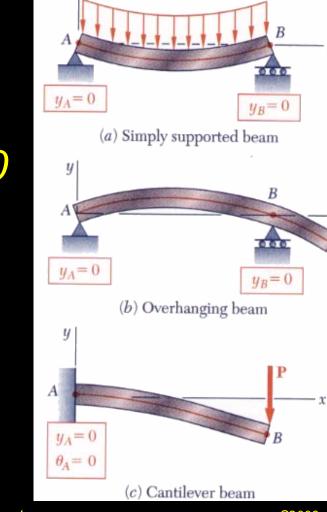

M(x)*curvature* = EI M(x) $\theta = slope$ dxEI M(x) $\Delta = deflection =$ dx


S2006abr

Beam Deflection & Design 3 Lecture 21 Architectural Structures I ENDS 231

Deflected Shape & M(x)

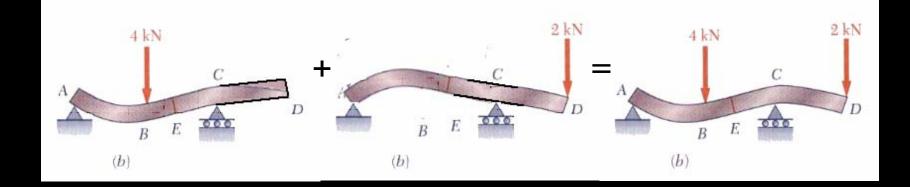
- -M(x) gives shape indication
- boundary conditions must be met



Architectural Structures I ENDS 231

Boundary Conditions

- at pins, rollers, fixed supports: y = 0
- at fixed supports: $\theta = 0$
- at inflection points from symmetry: $\theta = 0$



y

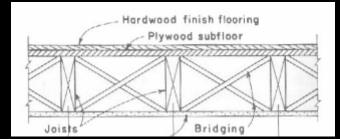
Beam Deflection & Design 5 Lecture 21 Architectural Structures I ENDS 231

Superpositioning

- if w can be superpositioned
 - $-\theta$ & y can
 - elastic range only!

Architectural Structures I ENDS 231

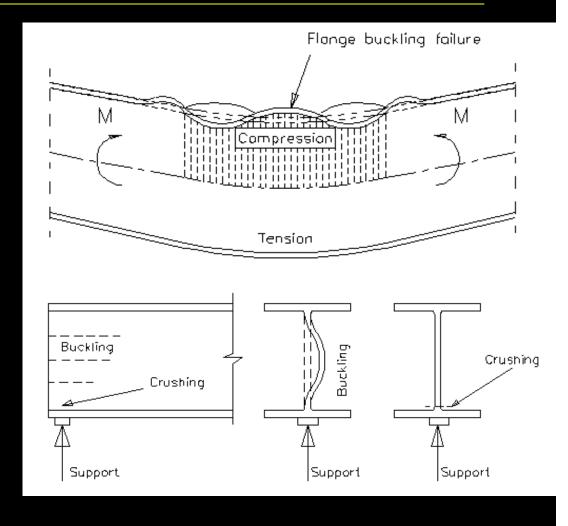
Deflection Limits


• based on service condition, severity

Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damageable elements)		L/480

Beam Deflection & Design 7 Lecture 21 Architectural Structures I ENDS 231

Lateral Buckling


- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_v

Beam Deflection & Design 8 Lecture 21 Architectural Structures I ENDS 231

Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force<u>"crippling"</u>

Beam Deflection & Design 9 Lecture 21 Architectural Structures I ENDS 231

Local Buckling

• flange

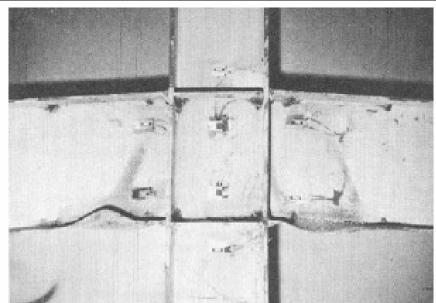


Figure 2-5. Flange Local Bending Limit State (Beedle, L.S., Christopher, R., 1964)

• web

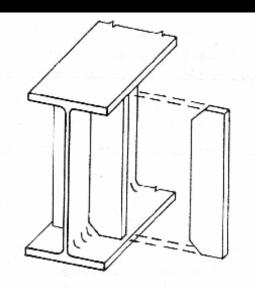
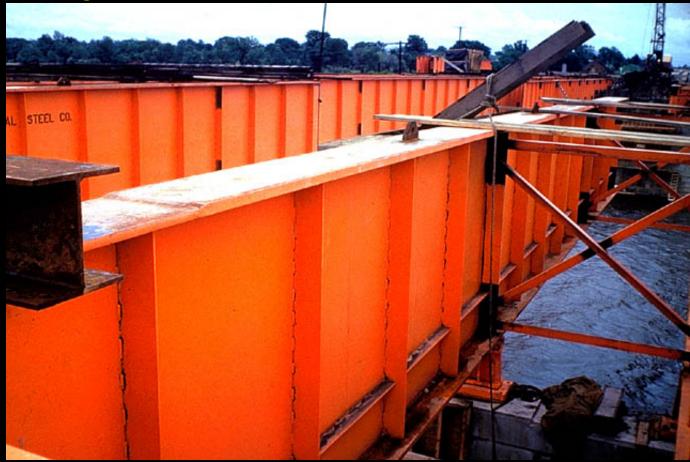


Figure 2-7. Web Local Buckling Limit State (SAC Project)

Beam Deflection & Design 10 Lecture 21 Architectural Structures I ENDS 231

Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners


stiffeners to prevent lateral buckling

Plastic Hinges in Ranges Shea Zane (a) Shear Failure (b) Shear Buckling

Beam Deflection & Design 11 Lecture 21 Architectural Structures I ENDS 231

Shear in Web

• plate girders and stiffeners

Beam Deflection & Design 12 Lecture 21 Architectural Structures I ENDS 231

1. Know F_{all} for the material or F_{U} for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{reg'd}$ $(f_b \leq F_b)$

4. Determine section size

Beam Deflection & Design 13 Lecture 21 Architectural Structures I ENDS 231

h

 bh^2

6

b

S

4*. Include self weight for M_{max}

and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

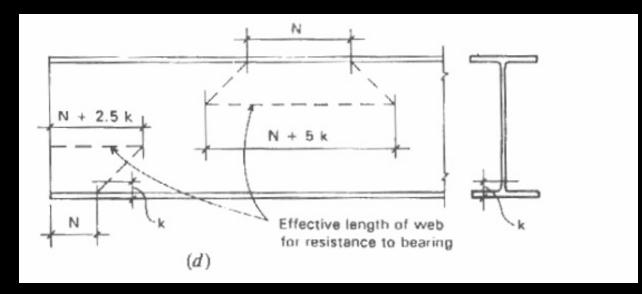
Beam Deflection & Design 14 Lecture 21 Architectural Structures I ENDS 231

6. Evaluate shear stresses - horizontal

•
$$(f_v \leq F_v)$$

• thin walled sections

3V


2A

 $f_{v-\max}$

 $f_{v-\max}$

veh

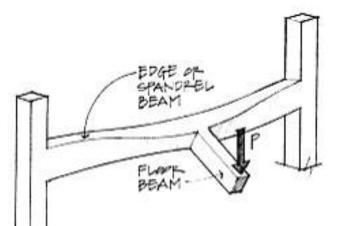
7. Provide adequate bearing area at supports

Architectural Structures I ENDS 231 R

A

F

 f_p

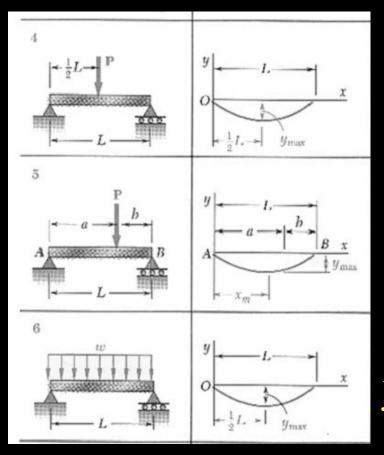

8. Evaluate torsion

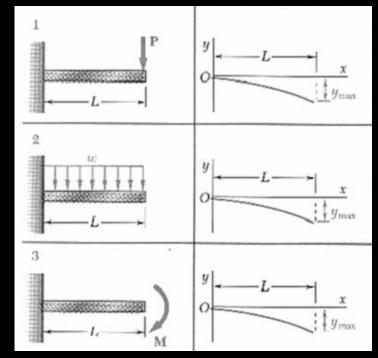
 $\left(f_{v} \leq F_{v}\right)$

• circular cross section $f = \frac{T\rho}{f}$

• rectangular
$$f_v = \frac{T}{c_1 a b}$$

Beam Deflection & Design 17 Lecture 21 Architectural Structures I ENDS 231

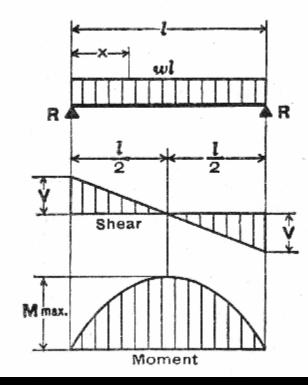


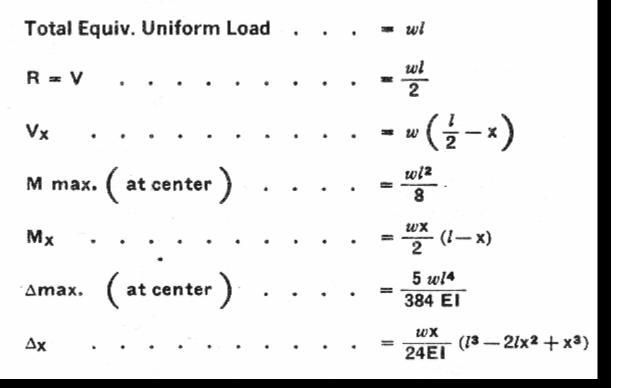

TABLE 3.1.	Coefficients for
Rectangular	Bars in Torsion

a/b	<i>c</i> ₁	C 2
1.0	° 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
- 00	0.333	0.333

SZUUUADN

9. Evaluate deflections




 $y_{\max}(x) = \Delta_{actual} \leq \Delta$ allowable

Beam Deflection & Design 18 Lecture 21 Architectural Structures I ENDS 231

9. – how to read charts

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

Beam Deflection & Design 19 Lecture 21 Architectural Structures I ENDS 231