Architectural Structures I: Statics and Strength of Materials

ENDS 231

DR. ANNE NICHOLS

SUMMER 2006

seventeen

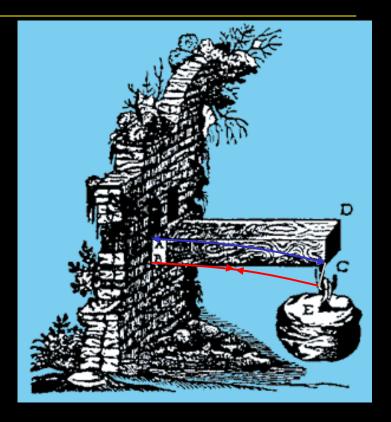
beams:

Copyright © Kirk Martini

bending and shear

Beam Bending

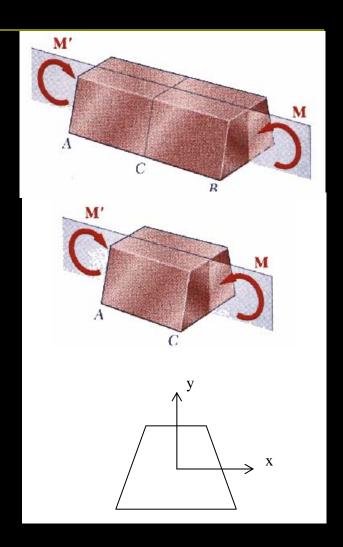
- Galileo
 - relationship between
 stress and depth²
- can see
 - top squishing
 - bottom stretching



what are the stress across the section?

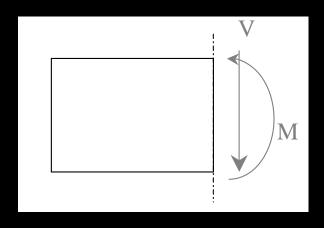
Pure Bending

- bending only
- no shear
- axial normal stresses from bending can be found in
 - homogeneous materials
 - plane of symmetry
 - follow Hooke's law



Bending Moments

• sign convention:



• size of maximum internal moment will govern our design of the section

Normal Stresses

- geometric fit
 - plane sectionsremain plane
 - stress varies linearly

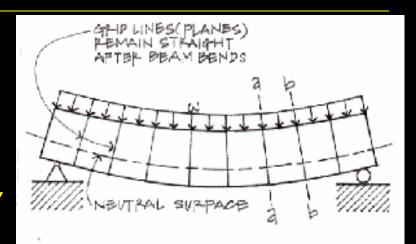


Figure 8.5(b) Beam bending under load.

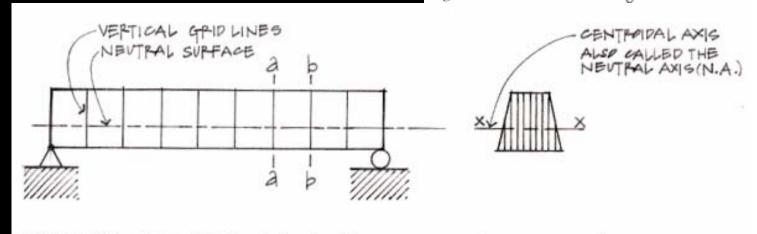


Figure 8.5(a) Beam elevation before loading.

Beam cross section.

Neutral Axis

stresses vary linearly

 zero stress occurs at the centroid

 neutral axis is line of centroids (n.a.)

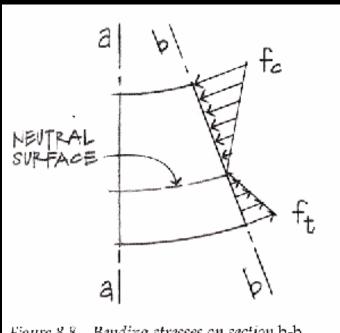


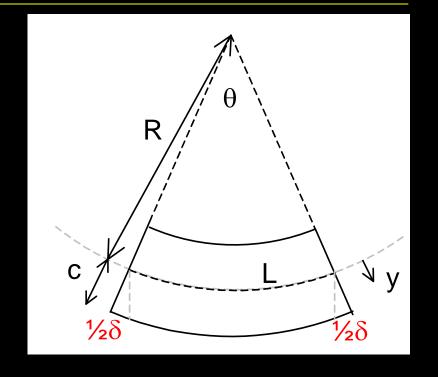
Figure 8.8 Bending stresses on section b-b.

Derivation of Stress from Strain

pure bending = arc shape

$$L = R\theta$$

$$L_{outside} = (R + y)\theta$$



$$\varepsilon = \frac{\delta}{L} = \frac{L_{outside} - L}{L} = \frac{(R + y)\theta - R\theta}{R\theta} = \frac{y}{R}$$

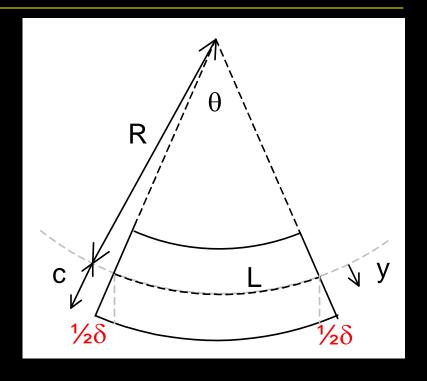
Derivation of Stress

• zero stress at n.a.

$$f = E\varepsilon = \frac{Ey}{R}$$

$$f_{\text{max}} = \frac{Ec}{R}$$

$$f = \frac{y}{c} f_{\text{max}}$$



Bending Moment

resultant moment from stresses = bending moment!

$$M = \sum f y \Delta A$$

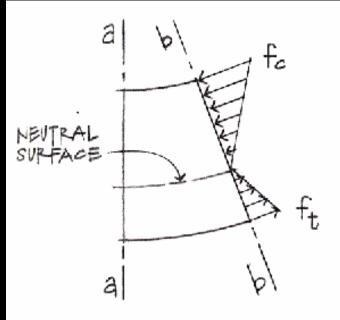


Figure 8.8 Bending stresses on section b-b.

$$= \sum \frac{yf_{max}}{c} y \Delta A = \frac{f_{max}}{c} \sum y^2 \Delta A = \frac{f_{max}}{c} I = f_{max} S$$

Bending Stress Relations

$$\frac{1}{R} = \frac{M}{EI}$$

$$f_b = \frac{My}{I}$$

$$S = \frac{I}{c}$$

curvature

general bending stress

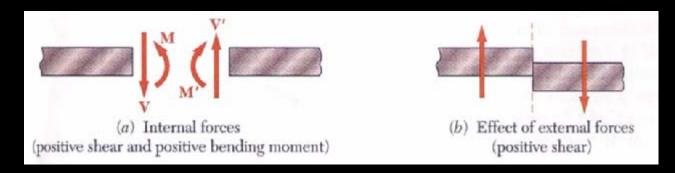
section modulus

$$f_b = \frac{M}{S}$$

$$S_{required} \ge \frac{M}{F_b}$$

required section modulus for design

Transverse Loading and Shear



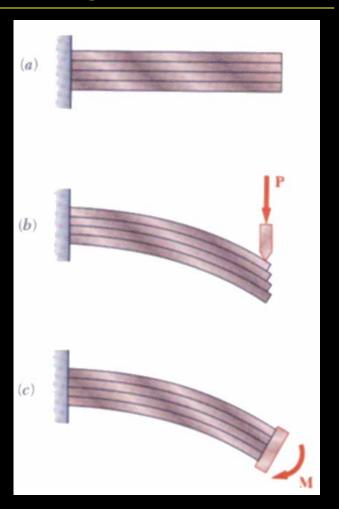
- perpendicular loading
- internal shear
- along with bending moment

Bending vs. Shear in Design

 bending stresses dominate

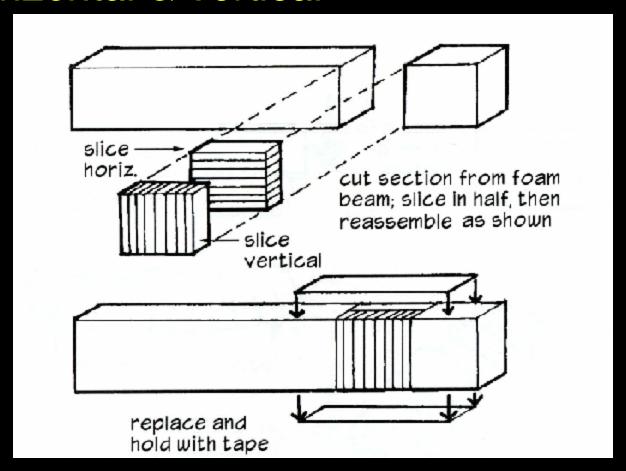
 shear stresses exist horizontally with shear

 no shear stresses with pure bending



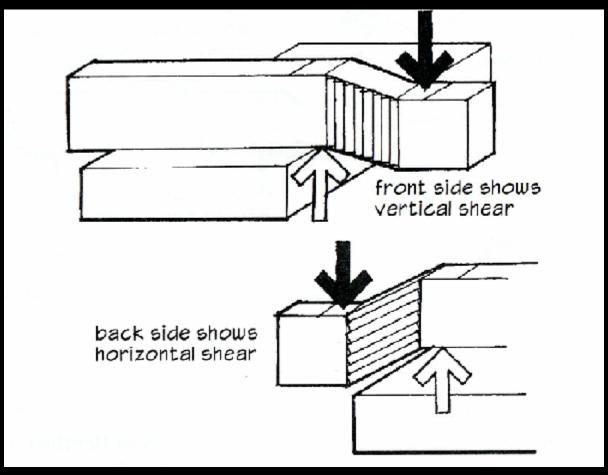
Shear Stresses

horizontal & vertical



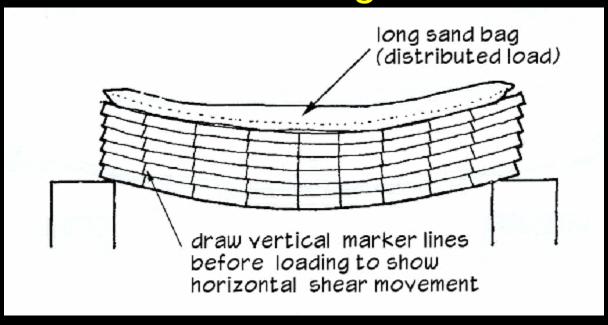
Shear Stresses

horizontal & vertical



Beam Stresses

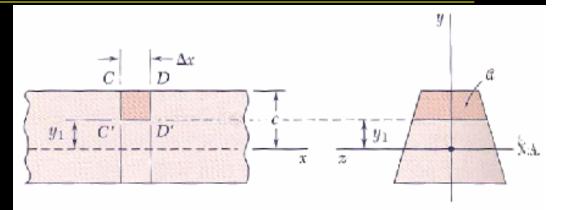
horizontal with bending

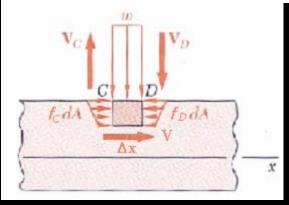


Equilibrium

horizontal force V needed

$$V_{longitudinal} = \frac{V_T Q}{I} \Delta x$$



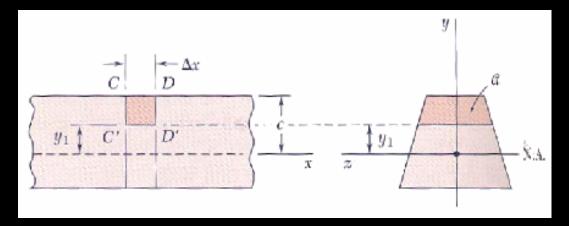


Q is a moment area

Moment of Area

 Q is a moment area with respect to the n.a. of area <u>above or below</u> the horizontal

Q_{max} at y=0
 (n.a.)



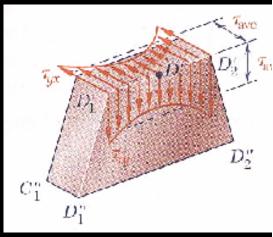
q is shear flow:

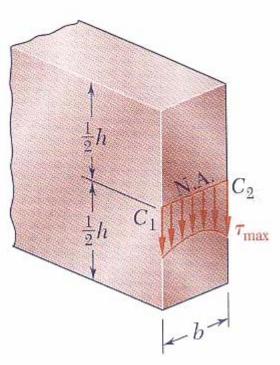
$$q = rac{V_{longitudinal}}{\Delta x} = rac{V_{T}Q}{I}$$

Shearing Stresses

$$f_{v} = \frac{V}{\Delta A} = \frac{V}{b \cdot \Delta x}$$

$$f_{v-ave} = \frac{VQ}{Ib}$$





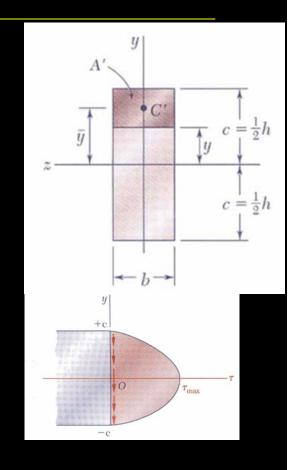
- $f_{v-ave} = 0$ on the top/bottom
- b min may not be with Q max
- with $h/4 \ge b$, $f_{v-max} \le 1.008 f_{v-ave}$

Rectangular Sections

$$I = \frac{bh^3}{12} \qquad Q = A\overline{y} = \frac{bh^2}{8}$$

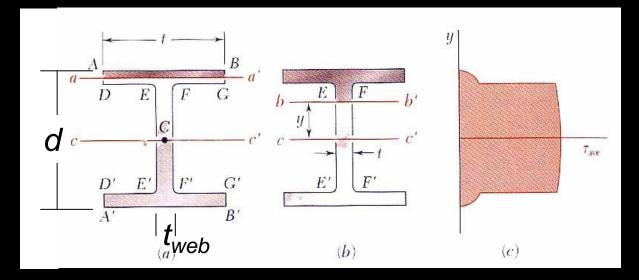
$$f_{v} = \frac{VQ}{Ib} = \frac{3V}{2A}$$

• f_{v-max} occurs at n.a.



Steel Beam Webs

- W and S sections
 - b varies

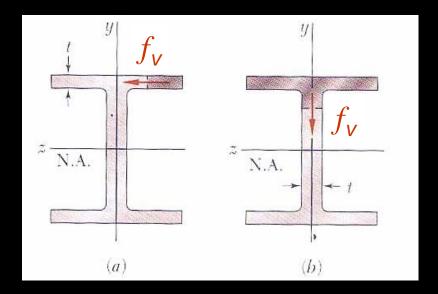


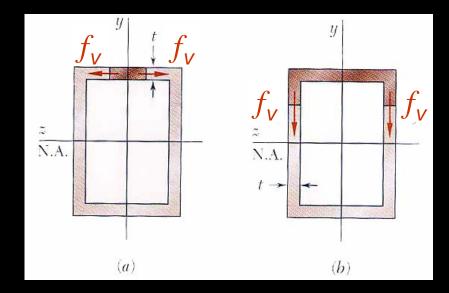
- stress in flange negligible
- presume constant stress in web

$$f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$$

Shear Flow

- loads applied in plane of symmetry
- cut made perpendicular $q = \frac{VQ}{Q}$

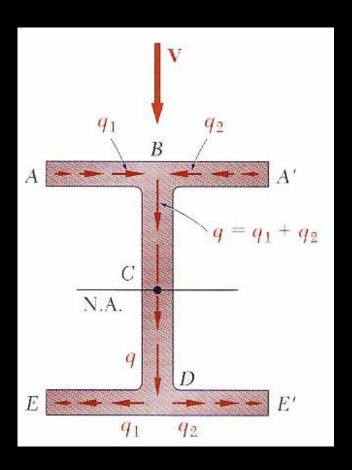




Shear Flow Quantity

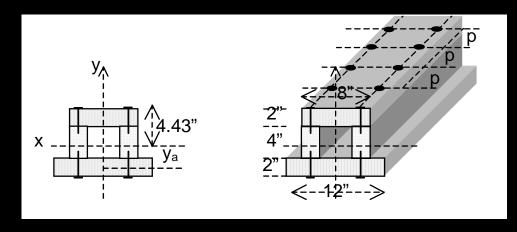
sketch from Q

$$q = \frac{VQ}{I}$$



Connectors Resisting Shear

- plates with
 - nails
 - rivets
 - bolts
- splices



$$rac{V_{longitudinal}}{p} = rac{VQ}{I}$$
 $nF_{connector} \geq rac{VQ_{connected\ area}}{I} \cdot p$

Vertical Connectors

• isolate an area with vertical interfaces

$$nF_{connector} \ge \frac{VQ_{connected\ area}}{I} \cdot p$$

Unsymmetrical Shear or Section

- member can bend and twist
 - not symmetric
 - shear not in that plane
- shear center
 - moments balance

