ENDS 231. Assignment #9

Date: 6/27/06, *due* 6/30/06

Problems: all but 9A & 9B from Onouye, Chapter 10.

*Note: Problems marked with a * have been altered with respect to the problem stated in the text.*

*Use A992 steel, and increase the load to 46 kips. Also select the column using LRFD design method and the column chart knowing the load is a dead load, and there is an additional live load of 70 k. $F_v = 50$ ksi, E = 30,000 ksi, $\gamma_D = 1.2$, $\gamma_L = 1.6$

Problem 10.4.3

9A) Determine the capacity of this butt splice based on shear, bearing, and net tension. The plates are made of A36 steel and the four bolts on each side of the splice are A325-SC with standard round holes.

Partial answers to check with: P = 60 k (shear governs with $P_b = 104.4 k$ and $P_{t-gross} = 86.4 k$, $P_{t-net} = 92.5 k$)

MORE NEXT PAGE

Worth 25 pts.

9B) Determine the capacity of the welded connection shown. The weld size is 3/16 in.. Assume the base metal is A36 steel and electrodes are E70XX in each problem. Use L = 4.5".

Partial answers to check with: $P_v = 38.9 \text{ k}, P_t = 33.75 \text{ k}$

- x-		י -X ס	De	sign	axial	CO W stre	LUM shap ngth	NS es in kij	os (ø	= 0.8	35)	$F_y = 36$ $F_y = 50$	ksi					
Designation Wt./ft <i>F</i> y						W8									W8			
		67		58		48		40		35		31		28		24		
		36	50	36	50	36	50	36	50	36	50	36	50	36	50	36	50	
	0	603	837	523	727	431	599	358	497	315	438	279	388	252	351	217	301	
	6	567	770	492	667	405	549	335	454	295	399	261	354	228	303	195	260	
2	7	555	746	481	647	396	532	327	439	288	386	255	342	219	288	188	247	
ы	8	541	721	469	624	386	513	319	423	280	372	248	329	210	271	180	232	
rati	9	526	693	455	599	374	492	309	405	272	356	240	315	200	253	171	217	
9y	10	509	662	441	5/2	362	4/0	298	386	262	339	232	300	189	235	162	200	
sof	11	492	631	425	544	349	446	287	366	252	321	223	284	178	216	152	184	
lius	12	473	598	409	515	335	422	275	345	242	303	214	268	167	197	142	168	
rac	13	453	564	391	485	321	397	263	324	231	284	204	251	155	178	132	151	
ast	14	433	529	374	455	306	372	251	303	220	265	194	234	143	160	122	136	
o les	15	412	494	355	425	291	347	238	281	208	246	184	217	132	142	112	121	
atto	16	301	460	337	304	276	321	225	260	107	228	174	200	121	125	102	106	
be	17	370	425	318	365	260	297	211	239	185	209	163	184	110	111	93	94	
res	18	349	392	300	335	245	272	198	219	174	191	153	168	99	99	84	84	
÷	19	328	359	281	307	229	249	185	199	162	174	143	153	89	89	75	75	
Ň	20	307	328	263	279	214	226	173	180	151	157	133	138	80	80	68	68	
(Ħ																		
ゼ	22	266	271	228	231	185	187	148	149	129	130	114	114	66	66	56	56	
ŧ	24	104	228	194	194	15/	15/	125	125	109	109	90	82	56	56	47	4/	
euč	20	167	167	143	143	115	115	92	92	80	80	70	70	47	47	44	44	
/e	30	146	146	124	124	100	100	80	80	70	70	61	61	44	44	40	40	
octiv		66672476		1.12.12		194220		0.000					100				E.C.	
Effe	32	128	128	109	109	88	88	70	70	61	61	54	54		自己的		1924	
-	33	120	120	103	103	83	83	66	66	58	58	51	51		和建筑的		T. Ask	
	34	113	113	97	97	78	78	62	62		Sec. 1						Sector March	
	55	107	107	31	31	Deen											Pro	
19.55				-		Ргор	erties			1.00	4 - 4	1.05	1.65	2.17	1.87	2.07	1.71	
		2.03	1.96	2	1.93	1.97	1.87	1.93	1.8	1.89	1.74	1.85	67	10	14	9	12	
Pwo (kips)		14/	205	120	16/	14	20	13	18	11	16	10	14	81	95	52	61	
Put (kips)		649	764	464	547	224	264	163	192	104	123	81	95	44	61	32	45	
Pe (kin	ns)	177	246	133	185	95	132	64	88	50	69	38	53	6.8	5.7	6.7	5.7	
L_{p} (ft)	,	8.8	7.5	8.8	7.4	8.7	7.4	8.5	7.2	8.5	7.2	8.4	7.1	27.2	18.8	24.3	17.2	
Lr (ft)		64.0	41.9	55.9	36.8	46.7	31.1	39.1	26.5	35.1	24.1	32.0	22.4	8.	25	7.	08	
A (in. ²)		19.7		17.1		14.1		11.7		10.3		9.13		98.0		82.8		
I_{x} (in. ⁴)		272		228		184		146		127		110		21.7		18.3		
I_{y} (in. ⁴)		88.6		75.1		60.9		49.1		42.6		37.1		1.62		1.61		
r _y (in.)		2.12		2.10		2.08		2.04		2.03		2.02		2.13		2.12		
Ratio rx / ry		1.75		1.74		1.	5260		1.73		1.73		1./2		620		2370	
Pex (KL) ² / 10"		7800		6520		1750		4170		3630		1070				-		

Note: Heavy line indicates K1 / r of 200.