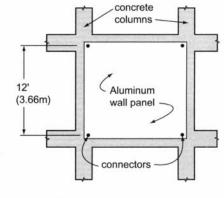
ENDS 231. Assignment #7

Date: 6/20/06, due 6/26/06 Worth 30 pts.

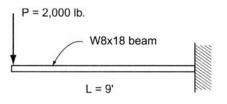
Problems: from Onouye, Chapters 6 & 9.


Note: Problems marked with a * have been altered with respect to the problem stated in the text. Multiframe 2D may be used.

*Use US customary units.

6.4.8 An aluminum curtain wall panel 12' (3.66 m) high is attached to large concrete columns (top and bottom) when the temperature is 65°F (18.3°C). No provision is made for differential thermal movement vertically. Because of insulation between them, the sun heats up the wall panel to 120°F (48.9°C) but the column only to 80°F (26.7°C). Determine the consequent compressive stress in the curtain wall.

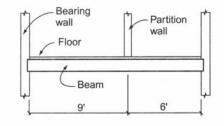
Partial answers to check with:


$$\delta_{restrained} = 0.0895 \text{ in, } f = 6,220 \text{ psi}$$

Problem 6.4.8

9.1.1 A cantilever beam has a span of 9 feet with a concentrated load of 2000 lb. at its unsupported end. If a W8×18 is used ($F_b = 22 \text{ ksi}$), is it safe?

*Also determine if it is safe for shear if $F_V = 14.5$ ksi? Find the maximum deflection at the free end. Use $E = 29 \times 10^3$ ksi.

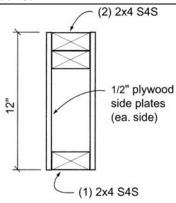


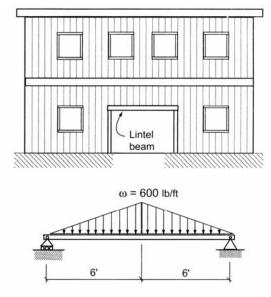
Problem 9.1.1

Partial answers to check with: $f_b = 14.2 \text{ ksi } (OK)$, $f_v = 1.07 \text{ ksi } (OK)$, $\Delta = 0.47 \text{ in.}$

9.1.4 A beam as shown supports a floor and partition where the floor load is assumed to be uniformly distributed (500 lb/ft.) and the partition contributes a 1000 lb concentrated load. Select the lightest W8 steel section if $F_h = 22$ ksi.

*Change the loads to 2500 lb/ft and 5000 lb. Also consider for design that the maximum deflection due to the distributed load (only) is L/240. Find f_v . Calculate the total deflection at midspan (7.5 ft) from the distributed load and the partition wall force. Use $E = 29 \times 10^3$ ksi.


Problem 9.1.4


Partial answers to check with: $S_{req'd} \ge 46.97$ in.³, $I_{required} \ge 26.1$ in.⁴, $\Delta = 0.53$ in.

ENDS 231 Su2006abn

9.1.14 A lintel beam 12' long is used in carrying the imposed loads over a doorway opening. Assuming that a built-up box beam is used with a 12" overall depth as shown, determine the maximum bending stress and shear stress developed.

* Also determine the required pitch spacing for the bottom 2x4 with 1 nail each side (2) with a shear capacity of 300 lb.

Problem 9.1.14

Partial answers to check with: $\hat{y} = 6.71$ in, $I_x = 496.2$ in.⁴, $f_b = 1168$ psi, $f_v = 195$ psi $(Q = 53.8 \text{ in}^3)$, p = 5.3 in. $(Q = 31.3 \text{ in}^3)$

Note: The negative area method is quicker for finding I_x .