## **Date:** 6/9/06, *due* 6/15/06

Problems: from Onouye, Chapters 3 & 7.

Note: Problems marked with a \* have been altered with respect to the problem stated in the text.

Construct FBDs and solve for the support reactions in each problem.

**3.3.1** A double overhang beam is loaded as shown. Solve for the reactions at *A* and *B*.

Partial answers to check with:  $A_y = +1,733$  lb.,  $B_x = 0, B_y = +3,067$  lb.



Problem 3.3.1



Partial answers to check with:  $A_x = 0$ ,  $A_y = -1.5 \text{ kN}$ ,  $B_y = +10.5 \text{ kN}$ 



Problem 3.3.5

**7.1.4** A precast concrete wall panel with dimensions shown is to be hoisted into position at a building site. In hoisting the wall panel, it might be useful to know the location of its centroid. Determine the centroidal *x* and *y* axes referenced from the lower left corner.

\*Also find the moments of inertia about the x axis and the y axis through the centroid found. 10' 10' 7' 0 4' 0' 4' 0' 0' 4' 0' 0' 4' 0' 0' 4' 0' 0' 0' 4' 0' 0' 0' 14'



Partial answers to check with:  $\hat{x} = 10.5'$ ,  $\hat{y} = 5.2'$ ,  $I_x = 1506 \text{ ft}^4$ ,  $I_y = 5888 \text{ ft}^4$ 

**7.3.4** A heavily loaded floor system uses a composite steel section as shown. A C15 × 40 channel section is attached to the top flange of the W18 × 50. Determine the  $I_x$  and  $I_y$  about the major centroidal axes using the cross-sectional properties given in the steel tables for standard rolled shapes (see Appendix).

Partial answers to check with: 
$$\hat{x} = 0$$
,  $\hat{y} = 12.9in.$ ,  
 $I_x = 1309 \text{ in.}^4$ ,  $I_y = 389 \text{ in.}^4$ 



Problem 7.3.4

Worth 30 pts.