ENDS 231. Assignment \#5

Date: 6/9/06, due 6/15/06
Worth 30 pts.
Problems: from Onouye, Chapters 3 \& 7.
Note: Problems marked with a * have been altered with respect to the problem stated in the text.

Construct FBDs and solve for the support reactions in each problem.
3.3.1 A double overhang beam is loaded as shown. Solve for the reactions at A and B.

Partial answers to check with: $A_{y}=+1,733 \mathrm{lb} .$, $B_{x}=0, B_{y}=+3,067 \mathrm{lb}$.
3.3.5 Determine the support reactions at A and B for the overhang beam shown.

Partial answers to check with: $A_{x}=0$,

$$
A_{y}=-1.5 \mathrm{kN}, B_{y}=+10.5 \mathrm{kN}
$$

7.1.4 A precast concrete wall panel with dimensions shown is to be hoisted into position at a building site. In hoisting the wall panel, it might be useful to know the location of its centroid. Determine the centroidal x and y axes referenced from the lower left corner.
> *Also find the moments of inertia about the x axis and the y axis through the centroid found.

Problem 3.3.1

Problem 3.3.5

Problem 7.1.4

Partial answers to check with: $\hat{x}=10.5^{\prime}, \hat{y}=5.2^{\prime}, I_{x}=1506 f t^{4}, I_{y}=5888 f t^{4}$
7.3.4 A heavily loaded floor system uses a composite steel section as shown. A C15 $\times 40$ channel section is attached to the top flange of the $\mathrm{W} 18 \times 50$. Determine the I_{x} and I_{y} about the major centroidal axes using the cross-sectional properties given in the steel tables for standard rolled shapes (see Appendix).

Partial answers to check with: $\hat{x}=0, \hat{y}=12.9$ in.,

$$
I_{x}=1309 \text { in. }^{4}, I_{y}=389 \text { in. }^{4}
$$

Problem 7.3.4

