Problem Solving, Units and Numerical Accuracy

Problem Solution Method:

1. Inputs $\begin{array}{c|c} \text{Outputs} & & & & \\ \text{Critical Path"} & & & & \\ \end{array} \begin{array}{c} & & & \\ \hline & & \\$

- 2. Draw simple diagram of body/bodies & forces acting on it/them.
- 3. Choose a reference system for the forces.
- 4. Identify key geometry and constraints.
- 5. Write the basic equations for force components.

FIND: The "resultant" of the two forces

- 6. Count the equations & unknowns.
- 7. SOLVE
- 8. "Feel" the validity of the answer. (Use common sense. Check units...)

Example: Two forces, A & B, act on a particle. What is the resultant?

1. GIVEN: Two forces on a particle and a diagram with size and orientation

SOLUTION:

- 2. Draw what you know (the diagram, any other numbers in the problem statement that could be put on the drawing....)
- 3. Choose a reference system. What would be the easiest? Cartesian, radian?
- 4. Key geometry: the location of the particle as the origin of all the forces Key constraints: the particle is "free" in space
- 5. Write equations: $size \ of \ A^2 + size \ of \ B^2 = size \ of \ resultant$ $sin \alpha = \frac{size \ of \ B}{1 + size \ of \ B}$
- 6. Count: Unknowns: 2, magnitude and direction ≤ Equations: 2 ∴ can solve
- 7. Solve: graphically or with equations
- 8. "Feel": Is the result bigger than A and bigger than B? Is it in the right direction? (like A & B)

<u>Units</u>

Units	Mass	Length	Time	Force
SI	kg	m	S	$N = \frac{kg \cdot m}{s^2}$
Absolute English	lb	ft	S	$Poundal = \frac{lb \cdot ft}{s^2}$
Technical English	$slug = \frac{lb_f \cdot s^2}{ft}$	ft	S	Ib force
Engineering English	lb	ft	S	Ib _{force}
Ü	$Ib_{force} = Ib_{(mass)} \times 32$	$2.17 \frac{ft}{s^2}$		
gravitational constant	$g_c = 32.17 \frac{ft}{s^2}$	(English)		
	$g_c = 9.81 \frac{m}{s^2}$	(SI)		
conversions (pg. vii)	1 in = 25.4 mm 1 lb = 4.448 N			

Numerical Accuracy

Depends on 1) accuracy of data you are given

2) accuracy of the calculations performed

The solution CANNOT be more accurate than the less accurate of #1 and #2 above!

DEFINITIONS: precision the number of significant digits

accuracy the possible error

Relative error measures the degree of accuracy:

 $\frac{\textit{relative error}}{\textit{measurement}} \times 100 = \textit{degree of accuracy (\%)}$

For engineering problems, accuracy rarely is less than 0.2%.