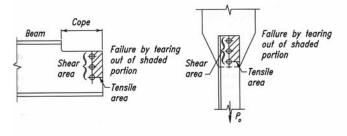
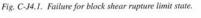
## **Connections and Tension Member Design**

### Connections

Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column.

Steel construction accomplishes this with bolt and welds. Wood construction uses nails, bolts, shear plates, and split-ring connectors.


### Bolted and Welded Connections


The limit state for connections depends on the loads:

- 1. tension yielding
- 2. shear yielding
- 3. bearing yielding
- 4. bending yielding due to eccentric loads
- 5. rupture

Welds must resist tension AND shear stress. The design strengths depend on the weld materials.

## **Bolted Connection Design**





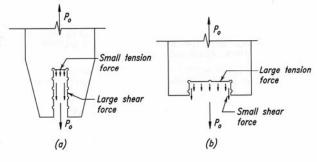
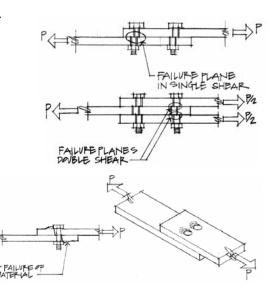



Fig. C-J4.2. Block shear rupture in tension

# Bolt designations signify material and type of connection where

SC: slip critical

- N: bearing-type connection with bolt threads *included* in shear plane
- X: bearing-type connection with bolt threads *excluded* from shear plane


Bolts rarely fail in \_\_\_\_\_\_. The material with the hole will more likely yield first.

Standard bolt holes are 1/16" larger than the bolt diameter.

## ASD

Allowable shear values are given by bolt type, connection type, hole type, diameter, and loading (Single or Double shear) in AISC manual tables.

Allowable bearing force values are given by bolt diameter, ultimate tensile strength,  $F_u$ , of the connected part, and thickness of the connected part in AISC manual tables.



1

BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips

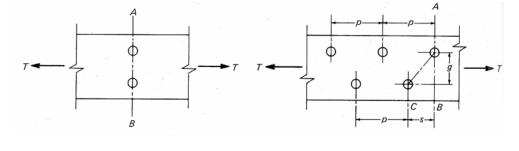
| ASTM         Contr         Hole $F_{V}$ Load $\frac{5}{7}$ Anominal Diameter d, in.           A307         —         Type*         ksi         ing $\frac{5}{7}$ $\frac{5}{7}$ $\frac{5}{7}$ $\frac{1}{7}$ <th>KIM<br/>beg         Conv<br/>reduin         Hels<br/>Type         Fx<br/>ks         Top         Monimal Damenet         Monimal Damenet<!--</th--><th>SIM<br/>begin         Corr<br/>begin         Hole<br/>for<br/>the<br/>form         Fx<br/>the<br/>for<br/>the<br/>for         Least<br/>the<br/>for<br/>the<br/>for         Fx<br/>the<br/>for<br/>the<br/>for         Least<br/>the<br/>for<br/>the<br/>for         Anomal<br/>the<br/>for<br/>the<br/>for         Anomal<br/>the<br/>for         Interest<br/>the<br/>for         Anomal<br/>the<br/>for         Interest<br/>the<br/>for         Interest<br/>for         Interest<br/>the<br/>for         In</th><th></th><th></th><th></th><th></th><th>TABLE</th><th>÷.</th><th>-D. S</th><th>SHEAR</th><th>щ</th><th></th><th></th><th></th><th></th><th></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                               | KIM<br>beg         Conv<br>reduin         Hels<br>Type         Fx<br>ks         Top         Monimal Damenet         Monimal Damenet </th <th>SIM<br/>begin         Corr<br/>begin         Hole<br/>for<br/>the<br/>form         Fx<br/>the<br/>for<br/>the<br/>for         Least<br/>the<br/>for<br/>the<br/>for         Fx<br/>the<br/>for<br/>the<br/>for         Least<br/>the<br/>for<br/>the<br/>for         Anomal<br/>the<br/>for<br/>the<br/>for         Anomal<br/>the<br/>for         Interest<br/>the<br/>for         Anomal<br/>the<br/>for         Interest<br/>the<br/>for         Interest<br/>for         Interest<br/>the<br/>for         In</th> <th></th> <th></th> <th></th> <th></th> <th>TABLE</th> <th>÷.</th> <th>-D. S</th> <th>SHEAR</th> <th>щ</th> <th></th> <th></th> <th></th> <th></th> <th></th> | SIM<br>begin         Corr<br>begin         Hole<br>for<br>the<br>form         Fx<br>the<br>for<br>the<br>for         Least<br>the<br>for<br>the<br>for         Fx<br>the<br>for<br>the<br>for         Least<br>the<br>for<br>the<br>for         Anomal<br>the<br>for<br>the<br>for         Anomal<br>the<br>for         Interest<br>the<br>for         Anomal<br>the<br>for         Interest<br>the<br>for         Interest<br>for         Interest<br>the<br>for         In |       |                                                   |                                |                   | TABLE          | ÷.                  | -D. S        | SHEAR             | щ                 |              |              |              |               |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------|--------------------------------|-------------------|----------------|---------------------|--------------|-------------------|-------------------|--------------|--------------|--------------|---------------|-----------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASTM<br>Molicity         Hole<br>Type         Fv<br>Instruction         Load<br>Hole<br>Type         Hole<br>Molicity         Fv<br>Instruction         Load<br>Hole<br>Hole<br>Hole         Fv<br>Instruction         Lease<br>Hole<br>Hole<br>Hole         Fv<br>Instruction         Lease<br>Hole<br>Hole<br>Hole<br>Hole         Fv<br>Instruction         Lease<br>Hole<br>Hole<br>Hole<br>Hole<br>Hole<br>Hole<br>Hole<br>Hol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASTM<br>biol         Com-<br>type         Hole<br>biol         FV<br>biol         Load<br>biol         FV<br>biol         FV<br>biol         Load<br>biol         FV<br>biol         FV<br>biol <thfv<br>biol         <thfv<br>biol         <thfv< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Nor</th><th>ninal Dia</th><th>meter d</th><th></th><th></th><th></th></thfv<></thfv<br></thfv<br>                                                                                                                                |       |                                                   |                                |                   |                |                     |              |                   | Nor               | ninal Dia    | meter d      |              |               |           |
| Unset<br>mation         Type <sup>1</sup><br>Type <sup>1</sup> isi<br>isi<br>SC <sup>1</sup> isi<br>SC <sup>1</sup> isi SC <sup>1</sup> <th>Unside         Type         Isia         ing         Analytic         Test of the initial intent in the initial intent initial intent initial initi initini inital initial initiali initial initial initininitiali</th> <th>Unside         Type         Isia         Ing         Analy         Total         To</th> <th></th> <th>ASTM</th> <th>Con</th> <th>Hole</th> <th>Ľ,</th> <th>Load-</th> <th>5/8</th> <th>3/4</th> <th>3/8</th> <th>-</th> <th>11/8</th> <th>11/4</th> <th>13/8</th> <th>11</th> | Unside         Type         Isia         ing         Analytic         Test of the initial intent in the initial intent initial intent initial initi initini inital initial initiali initial initial initininitiali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unside         Type         Isia         Ing         Analy         Total         To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | ASTM                                              | Con                            | Hole              | Ľ,             | Load-               | 5/8          | 3/4               | 3/8               | -            | 11/8         | 11/4         | 13/8          | 11        |
| Intercond         Type         No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Math         Type         X 2006         Atts         Solid         244         Solid         236         2418         Solid         127         1446         127         1448         123         1441         255         2441         255         2441         255         2441         255         2445         255         245         255         245         255         245         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255         255 <th255< th=""> <th255< th=""> <th255< th=""></th255<></th255<></th255<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mature         Type         T         300         T         306         4418         6013         784         99         1227         1448         1237         1448         1237         1448         1237         1448         1237         1448         1237         1448         1237         1448         1237         1448         1237         1448         1237         1549         1237         1549         1237         1549         1237         1549         1237         1549         134         1237         1348         1237         1348         1323         1347         1368         134         1416         135         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134         1356         134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Desig-                                            | ection                         | Type <sup>b</sup> | ksi            | 'ng                 |              | Are               | a (Base           | d on Not     | ninal Di     | ameter)      | in.2          |           |
| A307         -         NSID         10.0         5         3.1         8.4         6.0         7.7         9.9         12.3         14.9         23.5         24.5         29.4         5         27.5         10.0         7         9.9         12.3         14.9         25.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         29.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5         24.5         23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A307         -         STD         100         D         8,1         8,4         600         7,9         12,3         13,0         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1         23,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A007         —         SID         100         D         31         84         120         123         144         65         252         251         751         753         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265         265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | nation                                            | adki                           |                   |                |                     | 3068         | .4418             | .6013             | .7854        | .9940        | 1.227        | 1.485         | 1.7       |
| AD25         STD         17.0         5         5.2         15.1         10.2         15.3         15.6         25.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Str         Str         17.0         5         5.5         15         10.2         15.6         20.4         15.6         20.4         15.7         50.5         15.6         20.4         15.7         50.5         15.6         20.4         15.7         50.5         15.6         20.4         15.6         20.4         15.7         50.5         15.7         50.5         15.8         15.9         21.4         15.8         15.9         21.4         15.8         15.9         21.4         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8         15.8 <th15.8< th=""> <th15.8< th=""> <th15.8< th=""></th15.8<></th15.8<></th15.8<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Str         T70         T         T21         T25         T25 <tht25< th=""> <tht25< th=""> <tht25< th=""></tht25<></tht25<></tht25<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -     | A307                                              | I                              | STD               | 10.0           | ωD                  | 3.1          | 4.4<br>8.8        | 6.0               | 7.9          | 9.9<br>19.9  | 12.3 24.5    | 14.8<br>29.7  | 35        |
| Accs         ONG,<br>SSC         Total<br>SSC         ONG,<br>SSC         Total<br>SSC         Accs         Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                   |                                | STD               | 17.0           | sα                  | 5.22<br>10.4 |                   | 10.2              | 13.4<br>26.7 | 16.9<br>33.8 | 20.9         | 25.2          | 88        |
| A326         5.30         7.22         9.42         1.94         7.56         6.56         4.42         1.95         1.94         7.56         6.54         3.55         3.56         3.55         3.56         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55         3.55 <td>A225 To the set of th</td> <td>A225         Total         LSL         12.0         5         36         15.6         14.4         18.8         23.9         24.3         15.6         62.4         35.6         35.1         35.1         55.1         55.2         35.2         35.2         35.1         35.1         55.1         55.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.</td> <td></td> <td></td> <td>Class</td> <td>OVS,<br/>SSL</td> <td>15.0</td> <td>ഗവ</td> <td>4.60</td> <td>-</td> <td>9.02<br/>18.0</td> <td>11.8<br/>23.6</td> <td>14.9<br/>29.8</td> <td>18.4<br/>36.8</td> <td>22.3</td> <td>28</td>                                                                                                                                                                                                                                                                                                                                                                                                                                   | A225 To the set of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A225         Total         LSL         12.0         5         36         15.6         14.4         18.8         23.9         24.3         15.6         62.4         35.6         35.1         35.1         55.1         55.2         35.2         35.2         35.1         35.1         55.1         55.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                   | Class                          | OVS,<br>SSL       | 15.0           | ഗവ                  | 4.60         | -                 | 9.02<br>18.0      | 11.8<br>23.6 | 14.9<br>29.8 | 18.4<br>36.8 | 22.3          | 28        |
| N         STD,<br>NSL         21.0         5         6.4         8.6         5.6.5         5.5.6         5.6.5         5.5.6         5.7.5         5.6.4         5.5.5         5.7.5         5.6.4         5.5.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5         5.7.5 <td>N         STD,<br/>NSL         21.0         5         5.4         18.0         23.5         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         31.2         5.5         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2</td> <td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> <td></td> <td>A325</td> <td>:</td> <td>rsl</td> <td>12.0</td> <td>sο</td> <td>3.68</td> <td></td> <td>7.22</td> <td>9.42<br/>18.8</td> <td>11.9</td> <td>14.7<br/>29.4</td> <td>17.8</td> <td>24</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N         STD,<br>NSL         21.0         5         5.4         18.0         23.5         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         5.5         31.2         31.2         5.5         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2         31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | A325                                              | :                              | rsl               | 12.0           | sο                  | 3.68         |                   | 7.22              | 9.42<br>18.8 | 11.9         | 14.7<br>29.4 | 17.8          | 24        |
| X         STD,<br>NSL         30.0         5         39.2         13.3         160         27.6         36.4         47.1         59.6         84.4         51.5         56.2         36.1         47.1         59.6         84.4         51.5         56.2         36.1         47.1         51.5         62.4         31.2         51.5         56.2         36.1         47.1         51.5         62.4         31.2         51.5         56.7         51.5         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56.7         56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                   | z                              | STD,<br>NSL       | 21.0           | ഗവ                  | 6.4<br>12.9  | 9.3<br>18.6       | 12.6<br>25.3      | 16.5<br>33.0 | 20.9         | 25.8         | 31.2<br>62.4  | 50        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AB0         STD         21.0         5         55.4         15.5         15.5         25.6         31.2         25.4         25.5         31.2         25.5         31.2         25.5         31.2         25.5         31.2         25.5         31.5         35.5         31.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5         35.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91100 |                                                   | ×                              | STD,<br>NSL       | 30.0           | ഗവ                  | 9.2          | 13.3 26.5         | 18.0              | 23.6 47.1    | 29.8         | 36.8         | 44.5          | 8.5       |
| A490         A202         A80         552         552         552         552         552         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553         553 </td <td>Also         SSL         OVS         18.0         5.52         7.95         10.8         14.1         17.9         22.1         26.5           Also         LSL         15.0         D         3.50         13.3         18.0         23.5         23.5         35.5         35.5         35.5         35.5         35.5         35.4         44.1         25.5         35.7         44.0         55.7         86.8         44.5         55.7         86.8         44.5         55.7         86.8         44.5         55.7         86.8         45.5         35.7         24.1         31.7         24.1         31.7         28.1         33.7         44.0         55.7         86.8         45.5         55.7         86.7         55.7         86.7         55.7         86.7         55.7         86.7         55.7         38.7         45.5         55.2         26.9         45.7         55.2         26.7         35.7         35.7         34.4         25.5         26.0         35.7         35.7         34.8         55.7         35.9         45.5         55.0         35.7         35.9         45.7         55.9         45.5         36.7         35.9         45.5         36.7         35.9         45.5<td>Also         SSC         OVS         18.0         5.52         1.53         5.02         1.10         1.53         2.11         1.73         2.21         2.83         3.53         4.43         3.53         4.43         3.53         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5</td><td>8</td><td></td><td></td><td>STD</td><td>21.0</td><td>ωD</td><td>6.44</td><td></td><td></td><td>16.5<br/>33.0</td><td>20.9</td><td>25.8</td><td>31.2<br/>62.4</td><td>54</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Also         SSL         OVS         18.0         5.52         7.95         10.8         14.1         17.9         22.1         26.5           Also         LSL         15.0         D         3.50         13.3         18.0         23.5         23.5         35.5         35.5         35.5         35.5         35.5         35.4         44.1         25.5         35.7         44.0         55.7         86.8         44.5         55.7         86.8         44.5         55.7         86.8         44.5         55.7         86.8         45.5         35.7         24.1         31.7         24.1         31.7         28.1         33.7         44.0         55.7         86.8         45.5         55.7         86.7         55.7         86.7         55.7         86.7         55.7         86.7         55.7         38.7         45.5         55.2         26.9         45.7         55.2         26.7         35.7         35.7         34.4         25.5         26.0         35.7         35.7         34.8         55.7         35.9         45.5         55.0         35.7         35.9         45.7         55.9         45.5         36.7         35.9         45.5         36.7         35.9         45.5 <td>Also         SSC         OVS         18.0         5.52         1.53         5.02         1.10         1.53         2.11         1.73         2.21         2.83         3.53         4.43         3.53         4.43         3.53         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5</td> <td>8</td> <td></td> <td></td> <td>STD</td> <td>21.0</td> <td>ωD</td> <td>6.44</td> <td></td> <td></td> <td>16.5<br/>33.0</td> <td>20.9</td> <td>25.8</td> <td>31.2<br/>62.4</td> <td>54</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Also         SSC         OVS         18.0         5.52         1.53         5.02         1.10         1.53         2.11         1.73         2.21         2.83         3.53         4.43         3.53         4.43         3.53         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         4.43         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5.53         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8     |                                                   |                                | STD               | 21.0           | ωD                  | 6.44         |                   |                   | 16.5<br>33.0 | 20.9         | 25.8         | 31.2<br>62.4  | 54        |
| A490         LSL         15.0         5         4.60         15.3         18.0         25.3         18.0         21.8         14.9         18.4         22.3           N STD         28.0         5         3.5         13.3         18.0         25.6         29.8         36.8         44.4         51.5           N STD         28.0         5         3.6         12.4         33.7         44.0         55.7         83.7         84.1         53.8         86.1         44.16         55.7         83.2         119.0         119.4         146         55.7         83.2         119.1         119.4         156         22.0         55.1         119.1         55.7         84.1         62.8         32.1         119.1         15.6         119.4         147         147         147         147         25.0         32.7         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A490         LSL         15.0         5         4.50         13.3         18.0         2.23         18.4         2.23           N         STD         28.0         D         17.2         24.7         33.7         44.0         55.7         83.4         44.6           NSL         NSL         28.0         D         17.2         24.7         33.4         43.6         55.7         83.7         83.2         113.9         113.7         17.4         21.5         83.2         113.7         17.4         21.5         25.0         23.9         84.1         15.5         86.1         84.1         15.5         86.1         14.4         15.5         25.0         23.1         13.7         13.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         24.1         13.7         24.0         55.7         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0         55.3         24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A490         LSL         15.0         5         4.60         6.63         9.02         11.8         14.9         18.4         2.2.3           A400         NSL         28.0         5         3.1         13.3         18.0         25.5         23.9         38.8         44.4         5.3           A502-1         NSL         28.0         5         3.5         3.3         13.7         7.4         21.5         33.4         43.9         53.9         42.1         53.7         53.0         13.7         7.7         21.5         33.4         43.9         53.9         42.1         53.7         23.0         55.7         53.1         13.7         7.7         21.5         33.4         43.6         55.7         53.0         53.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         54.0         55.7         34.0         55.7 <t< td=""><td></td><td></td><td>SC<sup>a</sup></td><td>OVS,<br/>SSL</td><td>18.0</td><td>ωD</td><td>5.52</td><td></td><td></td><td>14.1<br/>28.3</td><td>17.9</td><td>22.1</td><td>26.7<br/>53.5</td><td>59</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                   | SC <sup>a</sup>                | OVS,<br>SSL       | 18.0           | ωD                  | 5.52         |                   |                   | 14.1<br>28.3 | 17.9         | 22.1         | 26.7<br>53.5  | 59        |
| N         STD,<br>NSL         280         5         3.6         1.2         4.6         2.6         2.8         4.1         5.7         8.7         8.1         5.7         8.7         8.1         5.7         8.7         8.1         5.3         5.4         4.15         5.9.4         4.16         5.9.4         4.15         5.9.5         8.7         8.7         8.7         8.7         8.7         8.7         8.7         8.7         8.7         8.7         8.7         8.7         8.7         8.7         1.9.5         9.8         4.1         5.5         8.7         9.7         1.0         7.7         1.0         1.7         2.5         9.2         1.3         7.7         1.0         1.7         2.5         9.2         1.3         7.7         1.0         1.7         2.5         9.2         1.3         1.7         2.1         1.3         1.7         2.1         1.4         2.0         3.2         3.4         3.2         3.4         3.2         3.4         3.2         3.4         3.2         3.4         3.2         3.4         3.2         3.4         3.2         3.4         3.2         3.4         3.6         3.2         3.2         3.4         3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N         STD,<br>NSL         280         5         35         12.2         16.8         22.0         27.8         33.4         41.5         54.4         41.6         55.8         34.4         55.4         31.7         77.8         54.7         55.9         54.1         53.6         36.1         59.0         113.0         11.7         55.3         34.1         55.4         31.7         77.7         115.5         31.2         77.7         21.5         21.0         27.7         31.5         77.7         115.5         13.2         17.4         21.5         26.0         32.7           A502.23         -         -         STD         2.9         5.7         9.7         10.5         11.7         5.5         9.2         7.7         10.5         11.4         38.0         45.1         52.0         32.7         34.4         25.6         32.7         34.4         25.9         52.0         32.7         34.6         52.0         32.7         34.6         52.0         32.7         34.6         52.0         32.7         32.4         34.7         35.0         34.7         35.0         34.7         35.0         35.7         32.7         32.1         32.1         32.1         35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N         STD,<br>NSL         28.0         5         3.6         12.2         16.8         22.0         27.8         34.4         41.6         59.4         41.5         41.0         55.7         83.7         83.1         59.4         41.6         59.4         41.6         59.4         41.6         59.4         41.6         59.4         41.0         55.7         83.7         83.7         83.7         83.7         83.6         83.2         59.2         119.0         11         59.4         11.9         11.0         11.1         59.7         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.2         11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | A490                                              | ¢                              | rsl               | 15.0           | ωD                  | 4.60         |                   |                   |              | 14.9         | 18.4         | 22.3          | 88        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X         STD,<br>NSL         400         S         12.3         17.7         24.1         31.4         36.8         49.1         59.4         159.4         1           A502-1         —         STD         17.5         S         5.4         7.7         0.5         13.7         12.4         5.8         80.2         159.0         15.2         50.0         57.5         34.8         42.9         52.0         52.0         57.5         34.8         42.9         52.0         55.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.1         52.0         52.1         52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X         STD,<br>NSC         40.0         S         12.3         17.7         24.1         31.4         30.8         49.1         59.4         159.4         1           A502-1         -         STD         17.5         D         10.7         15.5         21.0         27.5         34.8         42.9         52.0         52.0         27.5         34.8         42.9         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0         52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                   | z                              | STD,<br>NSL       | 28.0           | ωD                  | 8.6          | 12.4<br>24.7      | 16.8              | 22.0         | 27.8         | 34.4 68.7    | 41.6          | 48        |
| A502-1         —         STD         17.5         5.4         7.7         10.5         13.7         77.4         21.5         28.0           A502-3         —         STD         27.0         5         5.7         9.7         5.7         37.4         21.5         28.0         32.0         32.0         32.0         32.7         32.4         27.5         34.8         27.9         32.7         32.7         32.4         23.7         32.0         32.7         32.7         32.0         32.7         32.7         32.0         32.7         32.7         32.0         32.7         32.7         32.0         32.7         32.0         32.7         32.0         52.0         32.7         32.0         52.0         32.7         32.0         52.0         32.7         32.0         52.0         32.7         32.0         52.0         32.7         32.0         52.0         32.7         32.0         52.0         32.7         32.0         52.0         32.7         32.0         52.0         32.7         32.0         52.7         32.0         52.7         32.0         52.7         32.0         52.7         32.0         52.7         32.0         52.7         32.0         52.7         32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A502-1         —         STD         17.5         5.4         7.7         10.5         13.7         17.4         21.5         26.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A502-1         —         STD         17.5         5.4         7.7         10.5         13.7         77.4         21.5         38.0         22.0         55.4         10.7         15.5         21.0         21.9         22.0         65.3         32.0         65.3         34.6         21.9         21.9         22.0         65.3         34.6         61.7         51.9         21.9         21.9         23.0         65.3         34.6         61.7         51.9         21.0         13.7         51.9         21.0         65.3         32.9         65.7         71.9         15.6         61.3         23.9         61.7         15.7         10.1         12.7         14.7         13.0         65.3         23.0         65.7         23.1         24.4         60.7         24.3         24.0         65.3         38.0         11.1         13.9         14.7         11.0         15.4         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23.1         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                   | ×                              | STD,<br>NSL       | 40.0           | δ                   | 12.3         | 17.7              | 24.1 48.1         | 31.4<br>62.8 | 39.8         | 49.1         | 59.4<br>119.0 | 14 1      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 534   | A502-1                                            | I                              | STD               | 17.5           | ωD                  | 5.4          | 7.7               | 10.5 21.0         | 13.7<br>27.5 | 17.4         | 21.5         | 26.0<br>52.0  | 89        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AB6<br>(F <sub>a</sub> =58 ks)         N         STD         9.9         5         3.0         8.4         6.0         7.8         9.8         12.1         13.7           (F <sub>a</sub> =58 ks)         X         STD         12.8         5         3.0         8.4         6.0         7.8         3.9         13.1         15.7         19.0         15.6         19.7         13.1         15.4         3.0         14.7         16.0         15.6         19.0         15.7         13.0         15.7         13.0         15.5         13.0         3.0         14.8         16.5         13.1         3.0         14.8         16.5         13.0         14.5         15.2         15.4         20.1         35.6         13.2         3.0         14.5         16.5         13.0         3.0         14.5         16.5         16.5         33.0         16.5         13.2         3.0         3.0         14.7         16.5         14.5         38.0         14.5         16.5         31.2         13.2         13.2         13.2         13.2         23.2         32.2         33.2         32.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2         35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AB6<br>(F <sub>a</sub> =56 ksi)         N         STD         9.9         5         3.0         8.4         6.0         7.8         9.8         12.1         13.7           (F <sub>a</sub> =56 ksi)         X         STD         12.8         5         3.9         5.7         10.1         12.7         15.7         19.0         15.6         19.2         3.1.4         38.0           A572         Gr. 50         N         STD         11.1         D         6.8         9.8         11.2         15.7         13.1         3.8         0.8         11.2         7         3.1         3.80         0         3.8         13.1         15.4         20.1         25.6         3.9.1         3.80         0         14.5         3.80         0         14.5         3.80         0         14.5         3.80         0         15.6         13.7         2.12         2.12         3.30         15.4         2.13         3.30         15.4         2.12         2.12         3.30         3.7         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5 <td>HIM</td> <td>A502-2<br/>A502-3</td> <td>1</td> <td>STD</td> <td>22.0</td> <td>sο</td> <td>6.7<br/>13.5</td> <td>9.7<br/>19.4</td> <td>13.2 26.5</td> <td>17.3 34.6</td> <td>21.9</td> <td>27.0</td> <td>32.7<br/>65.3</td> <td>38</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HIM   | A502-2<br>A502-3                                  | 1                              | STD               | 22.0           | sο                  | 6.7<br>13.5  | 9.7<br>19.4       | 13.2 26.5         | 17.3 34.6    | 21.9         | 27.0         | 32.7<br>65.3  | 38        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X         STD         12.8         S         3.9         5.7         7.7         10.1         12.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.6         15.4         15.6         16.5         16.5         16.5         16.5         16.5         16.5         16.5         15.2         15.6         15.2         15.2         33.0         16.7         35.1         22.1         23.7         35.1         22.1         23.7         35.1         23.7         35.1         23.7         35.3         13.7         23.7         35.1         42.5         35.3         13.7         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2         13.2 <th13.6< th=""> <th13.5< th=""> <th13.6< th=""></th13.6<></th13.5<></th13.6<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X         STD         12.8         S         3.9         5.7         7.7         10.1         12.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.7         15.2         15.2         25.3         35.3         15.7         15.2         25.2         23.4         15.5         15.2         25.2         23.4         25.3         15.3         15.7         12.5         35.3         13.7         42.5         35.3         13.7         42.5         35.3         14.2         15.7         15.2         23.1         23.2         23.2         23.2         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | A36<br>(F <sub>c</sub> =58 ksi)                   | z                              | STD               | 9.9            | sο                  | 3.0          | 4.4               | 6.0               | 7.8          | 9.8          | 12.1<br>24.3 | 14.7<br>29.4  | 17.5 35.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M572.         Gr. 50         N         STD         11.1         5         3.4         4.9         6.7         8.7         11.0         13.5         14.6         13.7         17.7         27.2         23.0         17.7         23.1         17.4         22.1         27.2         23.0         17.7         23.1         24.2         17.7         23.1         24.2         17.7         23.1         24.2         17.7         23.1         24.2         17.7         24.2         37.1         31.0         31.1         31.5         31.2         13.2         13.2         14.2         35.1         42.5         35.1         42.5         35.1         42.5         35.1         42.5         35.1         42.5         35.1         42.5         35.1         42.5         35.1         42.5         35.1         42.5         35.1         42.5         35.1         42.5         35.3         35.1         42.5         35.3         35.1         42.5         35.3         35.1         42.5         35.3         35.1         42.5         35.3         35.1         43.5         35.7         35.2         35.2         35.2         35.3         35.3         35.1         35.1         35.1         35.1         35.1 <td>AF72.         Gr. 50         N         STD         11.1         5         3.4         4.9         6.7         8.7         11.0         13.5         14.2         13.7         13.7         12.7         13.5         14.5         14.2         17.7         21.7         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         <th21.2< th=""> <th22.2< th=""> <th23.3< th=""></th23.3<></th22.2<></th21.2<></td> <td>81</td> <td></td> <td>×</td> <td>STD</td> <td>12.8</td> <td>sο</td> <td>3.9</td> <td>5.7</td> <td>7.7</td> <td>10.1</td> <td>12.7<br/>25.4</td> <td>15.7</td> <td>19.0<br/>38.0</td> <td>24</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AF72.         Gr. 50         N         STD         11.1         5         3.4         4.9         6.7         8.7         11.0         13.5         14.2         13.7         13.7         12.7         13.5         14.5         14.2         17.7         21.7         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2         21.2 <th21.2< th=""> <th22.2< th=""> <th23.3< th=""></th23.3<></th22.2<></th21.2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81    |                                                   | ×                              | STD               | 12.8           | sο                  | 3.9          | 5.7               | 7.7               | 10.1         | 12.7<br>25.4 | 15.7         | 19.0<br>38.0  | 24        |
| X         STD         14.3         5         4.4         6.3         8.6         11.2         14.2         15.5         14.2         15.5         12.5           A586         N         STD         11.9         5         3.7         5.3         15.6         17.2         13.6         17.5         14.2         15.5         14.2         15.5         14.2         15.5         14.2         15.5         14.2         15.5         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         14.2         15.7         15.2         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3         15.3 <th< td=""><td>X         STD         14.3         S         4.4         15.3         8.6         11.2         14.2         15.7         21.2           A58         N         STD         11.9         S         3.7         5.3         15.2         13.5         13.6         17.5         21.2           A58         N         STD         11.9         S         3.7         5.3         15.2         13.7         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.7         23.7         23.2         33.3         33.7         13.7         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5</td><td>X         STD         14.3         S         44.4         6.3         8.6         11.2         14.2         15.5         28.4         17.5         21.2         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5</td></th<> <td>N Pa</td> <td></td> <td>z</td> <td>STD</td> <td>11.1</td> <td>sο</td> <td>3.4<br/>6.8</td> <td>4.9<br/>9.8</td> <td>6.7<br/>13.3</td> <td>8.7<br/>17.4</td> <td>11.0</td> <td>13.6 27.2</td> <td>16.5<br/>33.0</td> <td>5°</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X         STD         14.3         S         4.4         15.3         8.6         11.2         14.2         15.7         21.2           A58         N         STD         11.9         S         3.7         5.3         15.2         13.5         13.6         17.5         21.2           A58         N         STD         11.9         S         3.7         5.3         15.2         13.7         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.7         23.7         23.2         33.3         33.7         13.7         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X         STD         14.3         S         44.4         6.3         8.6         11.2         14.2         15.5         28.4         17.5         21.2         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5         13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N Pa  |                                                   | z                              | STD               | 11.1           | sο                  | 3.4<br>6.8   | 4.9<br>9.8        | 6.7<br>13.3       | 8.7<br>17.4  | 11.0         | 13.6 27.2    | 16.5<br>33.0  | 5°        |
| A586 N STD 11.9 S 3.7 5.3 7.2 9.3 11.8 14.6 17.7 (f <sub>a</sub> =70 ks) X STD 15.4 S 47.6 8 9.3 12.1 23.7 29.2 35.3 (f <sub>a</sub> =70 ks) X STD 15.4 S 4.7 16.8 9.3 12.1 15.3 18.9 22.9 4.5 15.4 13.6 18.5 24.2 30.6 37.8 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A58<br>( $F_{s}^{-1}$ O ks)         N         STD         11.9         S         3.7         15.3         17.3         18.7         23.2         13.5         14.5         17.7           ( $F_{s}^{-1}$ O ks)         X         STD         15.4         S         3.7         10.5         14.3         18.7         23.2         23.5         35.3           ( $F_{s}^{-1}$ O ks)         X         STD         15.4         D         9.3         12.1         18.5         24.2         18.5         18.3         23.7         8         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.3         35.5         36.6         37.8         45.7 <td>opeou</td> <td></td> <td>×</td> <td>STD</td> <td>14.3</td> <td>sο</td> <td>4.4</td> <td>6.3<br/>12.6</td> <td>8.6</td> <td>11.2</td> <td>14.2</td> <td>17.5 35.1</td> <td>21.2</td> <td>ã is</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | opeou |                                                   | ×                              | STD               | 14.3           | sο                  | 4.4          | 6.3<br>12.6       | 8.6               | 11.2         | 14.2         | 17.5 35.1    | 21.2          | ã is      |
| X STD 15.4 S 4.7 6.8 9.3 12.1 15.3 18.9 22.9 9.4 13.6 18.5 24.2 30.6 37.8 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X         STD         15.4         S         4.7         6.8         9.3         12.1         15.3         18.9         22.9           Silp critical connection with threads included in shear plane.         ing-type connection with threads included in shear plane.         OVS: Oversize round holes         45.7           Standard round holes (d+'hin.)         OVS: Oversize round holes         OVS: Oversize round holes         45.7           Long-or short-slotted hole mormal to load direction         SSL: Short-slotted holes         0         SSL: Short-slotted holes           Long-or short-slotted hole mormal to load direction         SSL: Short-slotted holes         0         0           Long-or short-slotted hole mormal to load direction         SSL: Short-slotted holes         0         0           Long-or short-slotted hole mormal to load direction         SSL: Short-slotted holes         0         0           Long-or short-slotted hole morection.         SSL: Short-slotted holes         0         0         0           Reading in the main to load direction         SSL: Short-slotted holes         0         0         0           Long-or short-slotted hole morection.         SSL: Short-slotted holes         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X         STD         15.4         S         9.3         12.1         15.3         18.9         22.9           Silp critical connection.         indy-type connection with threads included in shear plane.         24.2         30.6         37.8         45.7           indy-type connection with threads included from shear plane.         OVS: Oversize round holes         45.7           indy-type connection with threads included from shear plane.         OVS: Oversize round holes         45.7           indy-type connection with threads included from shear plane.         OVS: Oversize round holes         45.7           indy-type connection with threads excluded from shear plane.         OVS: Oversize round holes         45.7           indy-type connection.         SSL: Short-slotted holes         95.8           indy-type connection.         SSL: Short-slotted holes         46.7           indy-type connection.         SSL: Short-slotted holes         46.7           indy-type connection.         SSL: Short-slotted holes         46.4           indy-type connection.         SSL: Short-slotted holes         4.4           indy-type state state of the st                                                                                                                                                                                                                                                                                                                                                                                                               | 41    |                                                   | z                              | STD               | 11.9           | sο                  | 3.7          | 5.3<br>10.5       | 7.2               | 9.3          | 11.8         | 14.6 29.2    | 17.7<br>35.3  | 04        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % = Sip critical connection.<br>R Bearing-type connection with threads <i>included</i> in shear plane.<br>R Bearing-type connection with threads <i>accluded</i> from shear plane.<br>R Standard courd noise ( $d + 1/\kappa_{\rm in}$ ).<br>CNS: Standard courd noise ( $d + 1/\kappa_{\rm in}$ ).<br>CNS: Congor short-stotted holes ormal to load direction<br>R: Long-or short-stotted holes from and to load direction<br>(required in bearing-type connection).<br>% Single shear.<br>Plane D: 2.2, when threads are excluded from a shear plane.<br>bear of $F_{a} = 0.22F_{a}$ when threads are excluded from a shear plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sr. = Sip critical connection.<br>Restring-type connection with threads <i>included</i> in shear plane.<br>Restring-type connection with threads <i>sociuded</i> from shear plane.<br>The standard cound holes (4 + 1/s in.)<br>Standard cound holes normal to load direction<br>St. Cong-storted holes normal to load direction<br>(required) in baaring-type connection).<br>St. Stort-slotted holes<br>(required) in baaring-type connection).<br>St. Stort-slotted holes<br>(required) reading are excluded from a shear plane.<br>Readed parts of materials not listed, use F, = 0.17F, when threads are included in a shear<br>plane.<br>Readed parts of materials not listed, use F, = 0.17F, when threads are included in a shear<br>plane.<br>Readed parts of materials not listed, use F, = 0.17F, when threads are excluded from<br>Readed parts of materials not listed, use F, = 0.17F, when threads are included in a shear<br>plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                   | ×                              | STD               | 15.4           | sο                  | 4.7          | 6.8<br>13.6       | 9.3<br>18.5       | 12.1<br>24.2 | 15.3         | 18.9<br>37.8 | 22.9<br>45.7  | 6.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pane, and $F_v = 0.22F_v$ when threads are excluded from a shear plane.<br>To they pretension bolts 11%-in. dia. and greater, special impact wrenches may be required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | per, and f, = 0.22f, when threads are excluded from a shear plane.<br>This preension bolts 1%-in. dia. and greater, prepaid imperativent wenches may be required.<br>Wen bearing-type connections used to splice tension members have a flastener pattern whose length,<br>meaved parallel to the line of horce, exceeds 50 in, tabulated values shall be reduced by 20%. See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     | or only in surear<br>For threaded parts o         | of materi                      | als not           | listed, t      | JS6 F               | = 0.17/      | F, wher           | thread            | ds are it    | ncludec      | linas        | hear          |           |
| is single snear $D$ : Loudele snear.<br>For threaded parts of materials not listed, use $F_v = 0.17F_v$ when threads are included in a shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Men bearing-type connections used to splice tension members have a fastener pattern whose length,<br>measured parallel to the line of force, exceeds 50 in, tabulated values shall be reduced by 20%. See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -     | plane, and $F_v = 0.2$ .<br>To fully pretension b | 2F <sub>v</sub> whe<br>olts 1% | in threa          | ds are and gre | exclude<br>eater, s | pecial i.    | a shea<br>mpact v | r plane<br>wrench | es may       | be red       | uired.       |               |           |

2

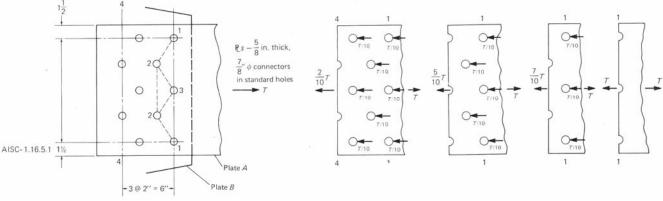
BOLTS AND THREADED PARTS Bearing Allowable loads in kips

|                                                                  | Si                                            | -       | 15.0<br>22.5 | 30.0<br>37.5<br>45.0<br>52.5 | 60.0                         | -10                          | 120.0       | -in.<br>-in.<br>wrk-<br>wrk-<br>the<br>ary<br>un-<br>der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------|-----------------------------------------------|---------|--------------|------------------------------|------------------------------|------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | $F_{\nu} = 100 \text{ ksi}$<br>Bolt dia.      | 8/2     | 13.1<br>19.7 | 26.3<br>32.8<br>39.4<br>45.9 |                              |                              | 105.0 120.0 | 9-type of ally %<br>ally %<br>%<br>%<br>%<br>allip at wo<br>anter of i<br>anter of i<br>the cent<br>or the cent<br>of the u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| suc                                                              | ۳.<br>۳                                       | 3/4     | 11.3<br>16.9 | 22.5<br>28.1<br>33.8         |                              |                              | 90.06       | I bearing<br>tr nomir<br>uced 20<br>blied in<br>xis of th<br>gainst s<br>ASD Co<br>he just<br>al value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TABLE I-E. BEARING<br>Slip-critical and Bearing-type Connections | si                                            | -       | 10.5<br>15.8 | 21.0<br>26.3<br>31.5<br>36.8 | 42.0<br>47.3<br>52.5<br>57.8 |                              | 84.0        | itcal and<br>diamete<br>trreme fa<br>l be red<br>oad apj<br>oad abj<br>oad abj<br>a |
| Sola                                                             | $F_{u} = 70$ ksi<br>Bolt dia.                 | 3/8     | 9.2<br>13.8  | 18.4<br>23.0<br>27.6<br>32.2 | 36.8<br>41.3<br>45.9         |                              | 73.5        | slip-crit<br>ave a crit<br>bart.<br>d part.<br>een ext<br>een ext<br>een ext<br>f and th<br>d and th<br>d and th<br>d and th<br>d and th<br>f A490-<br>f A490-<br>ilying th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EARII                                                            | <i>.</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 3/4     | 7.9<br>11.8  | 15.8<br>19.7<br>23.6<br>27.6 | 31.5                         |                              | 63.0        | in both<br>shall h<br>is shall h<br>is shall h<br>in betweed value<br>oles win<br>oles win<br>ol                                                                                        |
| TABLE I-E. BEARING<br>I and Bearing-type Co                      | si                                            | -       | 9.8<br>14.6  | 19.5<br>24.4<br>29.3<br>34.1 | 39.0<br>43.9<br>48.8<br>53.6 | 58.5                         | 78.0        | steners<br>steners<br>$\gamma_{va}$ in.)<br>= 1.2 i<br>= 1.2 i<br>= 1.2 i<br>= 1.2 i<br>soluted 7<br>soluted 7<br>soluted 7<br>soluted 7<br>soluted 1<br>soluted 1<br>solut                                                                                                                                                              |
| LE -<br>d Be                                                     | $F_{u} = 65$ ksi<br>Bolt dia.                 | 7/8     | 8.5<br>12.8  | 17.1<br>21.3<br>25.6<br>29.9 | 34.1<br>38.4<br>42.7<br>46.9 | •                            | 68.3        | nnical fa<br>er $(d + + d \text{ on } F_p$<br>er $(d + + d \text{ on } F_p$<br>ength of<br>ength of<br>s 50 in<br>s 50 in<br>s 50 in<br>s 120 Sp<br>SSD Sp<br>SSD Sp<br>statace d<br>in tholt i<br>reater the<br>ear bea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TAB<br>al an                                                     | <i>ч</i> , п                                  | 3/4     | 7.3<br>11.0  | 14.6<br>18.3<br>21.9<br>25.6 | 29.3<br>32.9                 |                              | 58.5        | Notes:<br>Notes:<br>This table is applicable to all mechanical fasteners in bot<br>nections utilizing standard holes. Standard holes shall<br>arger than the nominal bolt diameter ( $d + \gamma_{ve}$ in.).<br>Tabulated bearing values are based on $F_p = 1.2 F_v$ .<br>$F_v =$ specified minimum tensile strength of the connect<br>in connections transmitting axial force whose length bet<br>connections using high-strength bolts in slotted holes<br>connections with bolts in oversize holes shall be designed<br>to gload in accordance with AISC ASD Specification Se<br>Tabulated values apply when the distance <i>t</i> parallel to the<br>connections, with bolts in oversize holes shall be designed<br>to the edge of the connected part is not less than 1%<br>of to the edge of the connected part is not less than 1%<br>Jabues are limited to the double-shear bearing capacity<br>values are limited to the double-shear bearing capacity<br>values are limited to the double-shear bearing capacity<br>values for decimal thicknesses may be obtained by mult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| critic                                                           | si                                            | ۲       | 8.7<br>13.1  | 17.4<br>21.8<br>26.1<br>30.5 | 34.8<br>39.2<br>43.5<br>47.9 | 52.2<br>56.6<br>60.9         | 69.69       | ble to al<br>andard<br>andard<br>f force a<br>if force a<br>ligh-stra<br>nutting<br>r force with<br>r ove<br>ts in ove<br>the ove<br>ts in                                                                                                                                                        |
| Slip                                                             | u = 58 ksi<br>Bolt dia.                       | 7/8     | 7.6<br>11.4  | 15.2<br>19.0<br>22.8<br>26.6 | 30.5<br>34.3<br>38.1<br>41.9 | 45.7                         | 60.9        | applical<br>applical<br>string str<br>atring v<br>and mining<br>and and<br>atring v<br>astrong i<br>using i<br>using i<br>using i<br>using i<br>using i<br>using i<br>using i<br>using i<br>tho<br>bol<br>vith bol<br>gige of th<br>be<br>condin<br>the centin<br>the centi                                                                                                                                                                                                 |
|                                                                  | Ľ, m                                          | 3/4     | 6.5<br>9.8   | 13.1<br>16.3<br>19.6<br>22.8 | 26.1<br>29.4<br>32.6         |                              | 52.2        | Notes:<br>This table is applicable to all mechanical fasteners in both slip-critical and bearing-type con-<br>nections utilizing standard holes. Standard holes shall have a diameter nominally <i>y</i> <sub>ie</sub> h.<br>Tabulated bearing values are based on $F_p = 1.2 F_c$ .<br>$F_u =$ specified minimum tensile strength of the connected part.<br>$F_u =$ specified minimum tensile strength bott econnected part.<br>To connections using high-strength botts in slotted holes with the load applied in a direction<br>other than approximately normal (between 80 and 100 degrees) to the axis of the hole and<br>connections using high-strength bolts in slotted holes with the load applied in a direction<br>other than approximately normal (between 80 and 100 degrees) to the axis of the hole and<br>connections with bolts in oversize holes shall be redicted for the sais of the hole and<br>connections with bolts in oversize holes shall be designed for resistance against slip at work.<br>Tabulated values apply when the distance <i>l</i> parallel to the line of force from the center of the<br>bolt to the edge of the connected part is not less than $1y_2 d$ and the distance from the center<br>of a bolt to the edge of the connected part is not less than $3d$ . See AISC ASD Commentary<br>3.3.<br>Under certain conditions, values greater than the tabulated values may be justified under<br>gorefication Sect. $.3.7$ .<br>Values are limited to the double-shear bearing capacity of A490-X bolts.<br>Values for decimal thicknesses may be obtained by multiplying the decimal value of the un-<br>values for decimal thicknesses may be obtained by multiplying the decimal value of the un-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                  | Mate-<br>rial                                 | -unice- | 1/8<br>3/16  | %<br>5∕16<br>%8<br>7∕16      | 1/2<br>9/16<br>5/8<br>11/16  | 3/4<br>13/16<br>7/8<br>15/16 | -           | Notes:<br>This team of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

AMERICAN INSTITUTE OF STEEL CONSTRUCTION


AMERICAN INSTITUTE OF STEEL CONSTRUCTION

## **Tension Member Design**


In steel tension members, there may be bolt holes that reduce the size of the cross section.

Effective Net Area:

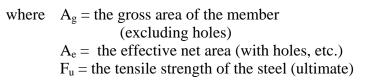
The smallest effective are must be determined by subtracting the bolt hole areas. With staggered holes, the shortest length must be evaluated.

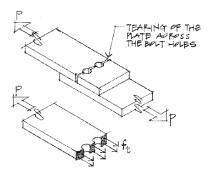


A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.



## <u>ASD</u>


| For other than pin connected members: | $F_t = 0.60 F_y$ on gross area                          |
|---------------------------------------|---------------------------------------------------------|
|                                       | $F_t = 0.50F_u$ on net area                             |
| For pin connected members:            | $F_t = 0.45 F_y$ on net area                            |
| For threaded rods of approved steel:  | $F_t = 0.33F_u$ on major diameter (static loading only) |


 $P_{u} \leq \phi_{t} P_{n}$ 

## <u>LRFD</u>

The limit state for tension members are:

- 1. yielding  $\phi_t = 0.9 \quad P_n = F_v A_g$
- 2. rupture  $\phi_t = 0.75 \quad P_n = F_u A_e$





## Welded Connections

Weld designations include the strength in the name, i.e. E70XX has  $F_y = 70$  ksi.

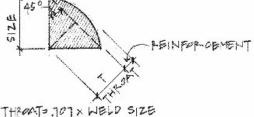
The throat size, T, of a fillet weld is determined trigonometry by:  $T = 0.707 \times weld$  size

## ASD

Allowable shear stress of a weld is limited to 30% of the nominal strength.

 $F_v = 18$  ksi for E60XX  $F_v = 21$  ksi for E70XX


Weld sizes are limited by the size of the parts being put together and are given in AISC manual table J2.4 along with the allowable strength per length of fillet weld, referred to as *S*.


The maximum size of a fillet weld:

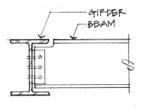
- a) can't be greater than the material thickness if it
  - is  $\frac{1}{4}$  or less
- b) is permitted to be 1/16" less than the thickness of the material if it is over 1/4"

The *minimum length* of a fillet weld is 4 times the nominal size. If it is not, then the weld size used for design is  $\frac{1}{4}$  the length.

Intermittent fillet welds can not be less that four times the weld size, not to be less than  $1 \frac{1}{2}$ ".

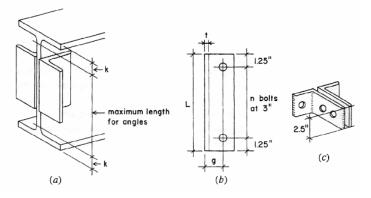





| Allowable | e Strength of Fil | llet Welds |
|-----------|-------------------|------------|
| pe        | r inch of weld (  | (S)        |
| Weld Size | E60XX             | E70XX      |
| (in.)     | (k/in.)           | (k/in.)    |
| 3/16      | 2.39              | 2.78       |
| 1⁄4       | 3.18              | 3.71       |
| 5/16      | 3.98              | 4.64       |
| 3/8       | 4.77              | 5.57       |
| 7/16      | 5.57              | 6.94       |
| 1/2       | 6.36              | 7.42       |
| 5/8       | 7.95              | 9.27       |
| 3⁄4       | 9.55              | 11.13      |

| TABLE J2.4                   |
|------------------------------|
| Minimum Size of Fillet Welds |

| Material Thickness of Thicker | Minimum Size of Fillet  |
|-------------------------------|-------------------------|
| Part Joined (in.)             | Weld <sup>a</sup> (in.) |
| To 1/4 inclusive              | 1/8                     |
| Over 1/4 to 1/2               | 3⁄16                    |
| Over 1/2 to 3/4               | 1/4                     |
| Over 3/4                      | 5⁄16                    |


American Institute of Steel Construction

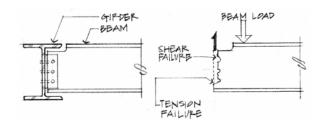
### **Framed Beam Connections**



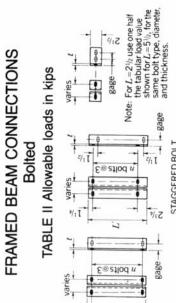
*Coping* is the term for cutting away part of the flange to connect a beam to another beam using welded or bolted angles.

AISC provides tables that give angle sizes knowing bolt type, bolt diameter, angle leg thickness, and number of bolts (determined by *shear* capacity).




## Load and Factor Resistance Design

In addition to resisting shear and tension in bolts and shear in welds, the connected materials may be subjected to shear, bearing, tension, flexure and even prying action. Coping can significantly reduce design strengths and may require web reinforcement. All the following must be considered:


- shear yielding
- shear rupture
- block shear rupture -

failure of a block at a beam as a result of shear and tension

- tension yielding
- tension rupture
- local web buckling
- lateral torsional buckling



| FRAMED BEAM CONNECTION<br>Bolted         Bolted         TABLE II Allowable loads in kips         L       Table II Allowable loads in kips | TABLE II-A Bolt Shear<br>For bolts in <b>bearing-type</b> connections with standard or slotted h                                                                                                                          | a A325-N A490-N A | F <sub>v</sub> , Ksi         21.0         28.0         30.0           Bolt Dia., $d$ $3_4$ $7_{68}$ 1 $3_4$ $7_{88}$ 1           In. $3_4$ $7_{68}$ 1 $3_4$ $7_{88}$ 1 | t el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 330         247         337         440         265           297         223         303         396         239 | 23%         25         8         148         202         264         198         269         352         212         289           20%         22         7         130         177         231         173         236         306         186         253           17%         19         6         111         152         198         148         202         264         159         216         233           17%         19         6         111         152         198         148         202         204         159         216           11%         13         4         74.2         101         132         99.0         136         136         138         180           8%         10         3         55.7         75.8         99.0         74.2         101         132         79.5         108         141           5%         7         2         37.1         50.5         66.0         49.5         67.3         80.0         52.0         141 | Tabulated load values are based on double shear of bolts.<br>Shaded values are based on double shear of the bolts; however, for length <i>L</i> ,<br>the angle thickness specified is critical. See Table II-C. | For shaded cells without values, shear rupture is critical for lengths L and L' c specified. See Table II-C.                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FRAMED BEAM CONNECTIONS<br>Bolted<br>TABLE II Allowable loads in kips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TABLE II-A Bolt Shear <sup>a</sup><br>For A307 bolts in standard or stotted holes and tor A325 and A490 bolts in <b>silp-critical</b><br>connections with standard holes and Class A, clean mill scale surface condition. | a A307 A325-SC A  | F,, Ksi         10.0         17.0         21.0         Note:           Bat Dia, d         3/4         7/6         1         3/4         7/6         1                  | NA         NA         NA         SA         SA< | n<br>10 88.4 120 157 150 204 267 186<br>9 79.5 108 141 135 184 240 167                                            | 25         8         70.7         96.2         126         120         164         214         148         202           22         7         61.9         84.2         110         105         143         187         130         177           19         6         53.0         72.2         94.2         110         105         143         187         130         177           16         5         53.0         72.2         94.2         55.1         102         134         92.8         126           13         4         35.5         36.1         77.1         80.1         82.4         101           10         3         26.5         36.1         47.1         84.1         63.8         80.1         55.7         76.8           7         2         17.7         24.1         31.4         30.0         40.9         53.4         37.1         50.5                                                                                                    | Notes:<br>Tabulated load values are based on double shear of botts unless noted. See RCSC Specifi-<br>cation for other surface conditions.                                                                      | *Capacity shown is based on double shear of the bolts; however, for length L, net shear on the angle thickness specified is critical. See Table II-C. |  |



|                                                                                                                                                      | 1        | A325-N              |         |                      | A490-N             | 7                     |           | A325-X     |          |          | A490-X   |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|---------|----------------------|--------------------|-----------------------|-----------|------------|----------|----------|----------|-------|
| Fv, KSI                                                                                                                                              |          | 21.0                |         |                      | 28.0               |                       |           | 30.0       |          |          | 40.0     |       |
| Bolt Dia., d<br>In.                                                                                                                                  | 3/4      | 3/8                 | -       | 3/4                  | 3/8                | -                     | 3/4       | 3/8        | -        | 3/4      | 3/8      | -     |
| Angle Thickness<br>t, In.                                                                                                                            | 5/16     | 3⁄8                 | 5/8     | 3/8                  | 1/2                | 5/8                   | 3/8       | 5/8        | 5/8      | 1/2      | 5/8      | *     |
| $\vdash$                                                                                                                                             |          |                     |         |                      |                    |                       |           |            |          |          |          |       |
| In. In. n                                                                                                                                            |          |                     |         |                      |                    |                       |           |            |          |          |          |       |
| 29½ 31 10 1                                                                                                                                          | 186      | 253                 | 330     | 247                  | 337                | 440                   | 265       | 361        |          | 353      |          |       |
| 28 9                                                                                                                                                 | 167      | 227                 | 297     | 223                  | 303                |                       | 239       | 325        |          | 318      |          |       |
| 25 8                                                                                                                                                 | 148      |                     | 264     | 198                  | 269                | 352                   | 212       |            |          | 283      | C A      |       |
| 22 7                                                                                                                                                 | 130      | 171                 | 231     | 173                  | 236                |                       | 186       |            | A BUNNIN | 247      |          |       |
| 19 6                                                                                                                                                 | E        | 152                 | 198     | 148                  | 202                |                       | 159       |            |          | 212      | 289      |       |
| 16 5                                                                                                                                                 | 92.8     | 126                 | 165     | 124                  | 168                |                       | 133       | 0.00       |          | 171      | 242      |       |
| 4                                                                                                                                                    | 74.2     | 101                 | 132     | 0.99                 | 135                |                       | 106       |            |          | 141      | 192      |       |
| 10 3                                                                                                                                                 | 55.7     | 75.8                | 0.99    | 74.2                 | 101                | 132                   | 79.5      | -          | 141      | 106      | 4        |       |
| 7 2                                                                                                                                                  | 37.1     | 50.5                | 66.0    | 49.5                 | 67.3               | 88.0                  | 53.0      |            |          | 7.07     | 8        |       |
| Tabulated load values are based on double shear of bolts.                                                                                            | value    | es are t            | ased o  | n dout               | ole she            | ar of bo              | olts.     |            |          |          |          |       |
| Shaded values are based on double shear of the bolts; however, for length L, net shear on the angle thickness specified is critical. See Table II-C. | are t    | pased c<br>specifie | on doub | ole shei<br>tical. S | ar of th<br>ee Tab | le bolts:<br>le II-C. | hower     | rer, for l | ength    | L, net s | hear o   | ~     |
| For shaded cells without values, shear rupture is critical for lengths L and L' on angle thickness                                                   | lls with | hout va             | lues, s | hear ru              | pture is           | s critica             | I for ler | ngths L    | and L'   | on ang   | jle thid | cness |
| specified. See Table II-C.                                                                                                                           | Table    | ⊢                   |         |                      |                    |                       |           |            |          |          |          |       |

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

### Example 1

**10.2** The butt splice shown in Figure 10.22 uses two  $8 \times \frac{3}{6}$ " plates to "sandwich" in the  $8 \times \frac{1}{2}$ " plates being joined. Four  $\frac{7}{6}$ "  $\phi$  A325-SC bolts are used on both sides of the splice. Assuming A36 steel and standard round holes, determine the allowable capacity of the connection.

#### Solution:

Shear, bearing, and net tension will be checked to determine the critical condition that governs the capacity of the connection. (Table I-D)

*Shear:* Using the AISC allowable shear in Table 10.1:

 $P_v = 20.4 \text{ k/bolt} \times 4 \text{ bolts} = 81.6 \text{ k}$  (double shear) (Table I-E)

*Bearing:* Using the AISC bearing in Table 10.2:

The thinner material with the largest proportional load governs, therefore, the  $\frac{1}{2}$ " center plate governs. Assume the bolts are at a *3d* spacing, center to center.

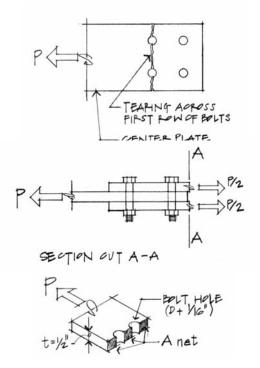
 $P_b = 30.5 \text{ k/bolt} \times 4 \text{ bolts} = 122 \text{ k}$ 

*Tension:* The center plate is critical since its thickness is less than the combined thickness of the two outer plates.

Hole diameter = (bolt diameter) +  $\frac{1}{16''} = \frac{7}{8''} + \frac{1}{16''} = \frac{15}{16''}$ .

 $A_{net} = (8'' - 2 \times \frac{15}{16}'') \times (\frac{1}{2}'') = 3.06 \text{ in.}^2$ 

 $P_t = F_t \times A_{net}$ 


where:

 $F_t = 0.5F_u = 0.5(58 \, \text{ksi}) = 29 \, \text{ksi}$ 

 $P_t = 29 \,\mathrm{k/in.^2} \times 3.06 \,\mathrm{in.^2} = 88.7 \,\mathrm{k}$ 

The maximum connection capacity is governed by shear.

 $P_{\text{allow}} = 81.6 \text{ k}$ 



### Example 2

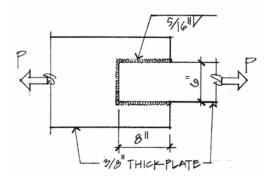
**10.7** Determine the capacity of the connection in Figure 10.44 assuming A36 steel with E70XX electrodes.

#### Solution:

Capacity of weld:

For a  $\frac{5}{16''}$  fillet weld, S = 4.64 k/in

Weld length = 22''


Weld capacity =  $22'' \times 4.64$  k/in = 102.1 k

Capacity of plate:

 $F_t = 0.6F_y = 22 \,\mathrm{ksi}$ 

Plate capacity =  $\frac{3}{2}$  × 6" × 22 k/in.<sup>2</sup> = 49.5 k

: Plate capacity governs,  $P_{\text{allow}} = 49.5 \text{ k}$ 



The weld size used is obviously too strong. What size, then, can the weld be reduced to so that the weld strength is more compatible to the plate capacity? To make the weld capacity  $\approx$  plate capacity:

 $22'' \times (weld capacity per in.) = 49.5 k$ 

Weld capacity per inch =  $\frac{49.5 \text{ k}}{22 \text{ in.}} = 2.25 \text{ k/in.}$ (page 4)

From Table 10.5, use  $\frac{3}{16}''$  weld (*S* = 2.78 k/in.).

Minimum size fillet =  $\frac{3}{16}$ " based on a  $\frac{3}{8}$ " thick plate.

| TIONS<br>kips                                           | for A36 Material        | ٠                    | Va 5/16 3/8 1/2 %                 |         | 205 246 328<br>184 221 295<br>163 196 261<br>142 170 227<br>8 121 145 194<br>9 99.9120 160 | 63.1         78.8         94.6126         158           46.2         57.8         69.3         92.4116           29.4         36.7         44.0         58.7         734 |          | 177         222         266         355         44           160         201         241         321         401           144         179         215         287         359           112         158         155         287         359           317         158         190         253         317           110         137         155         262         225         330           330         1165         190         233         317         156         226         275           330         1167         139         165         220         275         266         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276         276 <td< th=""><th>Table based on an allowable shear of <math>0.3F_{\nu}</math> (17.4 ksi for A36 angles) of the net section of two angles.<br/>Net section based on diameter of fastener + <math>\gamma_{\rm A6}</math> in.<br/>American Institute of Street Construction</th></td<> | Table based on an allowable shear of $0.3F_{\nu}$ (17.4 ksi for A36 angles) of the net section of two angles.<br>Net section based on diameter of fastener + $\gamma_{\rm A6}$ in.<br>American Institute of Street Construction |
|---------------------------------------------------------|-------------------------|----------------------|-----------------------------------|---------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IECTI<br>Is in ki                                       | C<br>Angles for         |                      | 8/8                               |         |                                                                                            | 169<br>124<br>78.8                                                                                                                                                       |          | 470 1<br>425 1<br>381 1<br>336 1<br>291 1<br>291 1<br>291 1<br>156 1<br>111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.4 ksi fo<br>We in.                                                                                                                                                                                                           |
| BEAM CONNECTIONS<br>BOLTED<br>I Allowable loads in kips | n Ang                   | 9/2                  | %8 ½2                             |         |                                                                                            | 01 135<br>74.2 99.0<br>47.3 63.1                                                                                                                                         |          | 82 376<br>55 340<br>28 305<br>01 269<br>75 233<br>75 233<br>75 233<br>76 233<br>76 233<br>78 197<br>21 161<br>93.8 125<br>66.9 89.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an allowable shear of 0.3 <i>F</i> <sub>u</sub> (17.4 ksi for<br>angles.<br>sed on diameter of fastener + <i>V</i> <sub>16</sub> in.                                                                                            |
| BOLTED<br>BOLTED<br>Allowable I                         | TABLE II-<br>Connection | 2                    | 5/16 3                            |         | 219<br>196<br>174<br>152<br>152<br>129<br>107                                              | 84.31<br>61.9<br>39.4                                                                                                                                                    |          | 235 22<br>213 22<br>190 22<br>168 21<br>145 11<br>145 11<br>145 11<br>101 11<br>78.2<br>55.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table based on an allowable shear of 0.3 <i>F</i> <sub>u</sub> (section of two angles.<br>Net section based on diameter of fastener +<br>American Institute of Street Co                                                        |
|                                                         |                         |                      | *                                 |         | 175<br>157<br>139<br>121<br>121<br>103<br>85.4                                             | 67.4<br>49.5<br>31.5                                                                                                                                                     |          | 188<br>170<br>152<br>134<br>116<br>98.4<br>80.5<br>62.5<br>62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lowab<br>i diam                                                                                                                                                                                                                 |
| FRAMED<br>TABLE I                                       | ear in                  |                      | 1/2                               |         | 372<br>334<br>296<br>258<br>258<br>258                                                     | 144<br>1 105<br>67.4                                                                                                                                                     |          | 398<br>360<br>322<br>284<br>284<br>284<br>208<br>170<br>7<br>132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table based on an all<br>section of two angles<br>Net section based on<br>Ametro                                                                                                                                                |
| TA TA                                                   | Shear                   | **                   | 3/8                               |         |                                                                                            | 108<br>79.1<br>50.6                                                                                                                                                      |          | 299<br>270<br>241<br>241<br>241<br>184<br>156<br>127<br>98.<br>98.<br>70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of two<br>ition be                                                                                                                                                                                                              |
| ш                                                       | able                    | 6.                   | 5/16                              |         | 00                                                                                         | 89.7<br>65.9<br>42.1                                                                                                                                                     |          | 249<br>225<br>201<br>177<br>154<br>154<br>154<br>130<br>106<br>82.2<br>58.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ble ba                                                                                                                                                                                                                          |
|                                                         | Allowable               |                      | **                                |         | 186<br>167<br>148<br>148<br>129<br>110<br>90.8                                             | 71.8<br>52.7<br>33.7                                                                                                                                                     |          | 199<br>161<br>142<br>142<br>123<br>123<br>84.8<br>84.8<br>65.8<br>46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |
|                                                         | A                       | đ                    | e ż.                              | C       | 10<br>9<br>6<br>7<br>0<br>7<br>0                                                           | 4 6 0                                                                                                                                                                    | C        | 10<br>90<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOTES                                                                                                                                                                                                                           |
|                                                         |                         | Bolt<br>Dia.,<br>In. | Angle<br>Thick-<br>ness, t<br>In. | Ч.<br>Ц | 29½<br>26½<br>23½<br>23½<br>20½<br>17½<br>14½                                              | 11½<br>8½<br>5½                                                                                                                                                          | , i<br>i | 31<br>28<br>25<br>22<br>19<br>16<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | z                                                                                                                                                                                                                               |

### Example 3

The steel used in the connection and beams is A992 with  $F_y = 50$  ksi, and  $F_u = 65$  ksi. Using A490-N bolt material, determine the maximum capacity of the connection based on shear in the bolts, bearing in all materials and pick the number of bolts and angle length (not staggered). Use A36 steel for the angles.

W21x93: d = 21.62 in,  $t_w = 0.58$  in,  $t_f = 0.93$  in W10x54:  $t_f = 0.615$  in

#### SOLUTION:

The maximum length the angles can be depends on how it fits between the top and bottom flange with some clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts. This example uses 1" of clearance:

Available length = beam depth - both flange thicknesses - 1" clearance at top & 1" at bottom

$$= 21.62 \text{ in } - 2(0.93 \text{ in}) - 2(1 \text{ in}) = 17.76 \text{ in}.$$

The standard lengths for non-staggered holes (L) and staggered holes (L') are shown in Table II-A. The closest size within the available length is  $17 \frac{1}{2}$  in. This will fit 6 bolts (n) with a standard spacing.

We have a choice of bolt diameters of  $\frac{34}{7}$ ,  $\frac{7}{8}$  and 1" in Table II-A. These have allowable loads for **shear** (double) of 148 kips, 202 kips, and 264 kips. But the last two values are shaded and the note says that "net shear on the angle thickness specified is critical" and to see Table II-C. The angle thickness (t) is listed below the bolt diameter.

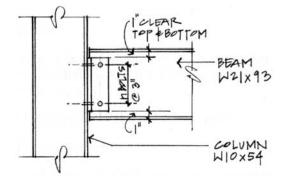
Table II-C gives a value of 207 kips for a 7/8" bolt diameter,  $\frac{1}{2}$ " angle thickness, and 17.5" length. It gives a value of 242 kips for a 1" bolt diameter, 5/8" angle thickness, and 17.5" length. Therefore, 242 kips is the maximum value limited by shear in the *angle*.

 $P_p = 264$  kips for double shear of 1" bolts (Table I-D: 6 bolts · (44 k/bolt) = 264 kips)

 $P_v = 242$  kips for net shear in angle

We also need to evaluate **bearing** of bolts on the angles, beam web, and column flange where there are bolt holes. Table I-E provides allowable bearing load for the material type, bolt diameter and some material thicknesses. The last note states that "Values for decimal thicknesses may be obtained by multiplying the decimal value of the unlisted thickness by the value given for a 1-in. thickness". This comes from the definition for bearing stress:

$$f_P = \frac{P}{td} \le F_p$$
, where  $P_p = t \cdot d \cdot F_p$  at the allowable bearing stress


For a constant diameter and allowable stress, the allowable load depends only on the thickness.

a) Bearing for 5/8" thick angle: There are 12 bolt holes through two angle legs to the column, and 12 bolt holes through two angle legs either side of the beam. The material is A36 ( $F_u = 58$  ksi), with 1" bolt diameters.

b) Bearing for column flange: There are 12 bolt holes through two angle legs to the column. The material is A992 ( $F_u = 65$  ksi), 0.615" thick, with 1" bolt diameters.

c) Bearing for beam web: There are 6 bolt holes through two angle legs either side of the beam. The material is A992 ( $F_u = 65$  ksi), 0.58" thick, with 1" bolt diameters

Although, the bearing in the beam web is the smallest at 271 kips, with the shear on the bolts even smaller at 264 kips, *the maximum capacity for the simple-shear connector is 242 kips* limited by net shear in the angles.

