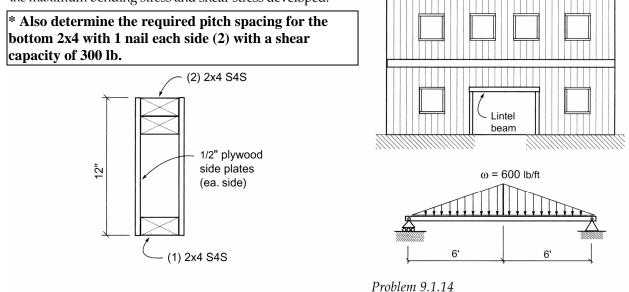

ENDS 231. Assignment #9

Date: 3/27/08, *due* 4/3/08

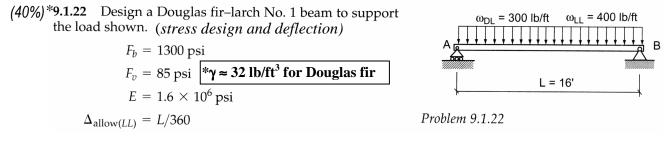
Problems: from Onouye, Chapter 9.

*Note: Problems marked with a * have been altered with respect to the problem stated in the text. Multiframe4D may be used for V & M diagrams.*


(30%) 9.1.11 Two steel plates (A572, $F_y = 50$ ksi) are welded together to form an inverted T-beam. Determine the maximum bending stress developed. Also determine the maximum shear stress at the neutral axis (N.A.) of the cross-section and at the intersection where the stem joins the flange. (*flexural and shear stress*)

Partial answers to check with: $\hat{y} = 3.07$ in from bottom, $I_x = 112.6$ in.⁴, $f_b = 27.6$ ksi, $f_{v-max} = 1.37$ ksi, $(Q_{na} = 17.6 \text{ in}^3)$, Prob $f_{v-joint} = 1.20$ ksi $(Q = 15.44 \text{ in}^3)$.

Problem 9.1.11


(30%)*9.1.14 A lintel beam 12' long is used in carrying the imposed (*flexural and shear stress*) loads over a doorway opening. Assuming that a built-up box beam is used with a 12" overall depth as shown, determine the maximum bending stress and shear stress developed.

Partial answers to check with: $\hat{y} = 6.71$ in, $I_x = 496.2$ in.⁴, $f_b = 1168$ psi, $f_v = 195$ psi $(Q = 53.8 \text{ in}^3)$, p = 5.3 in. $(Q = 31.3 \text{ in}^3)$ Note: The negative area method is quicker for finding I_x .

MORE NEXT PAGE

Pass-fail work

Partial answers to check with:

 $S_{x-req'd} = 207 \text{ in.}^3$, $A_{req'd} = 99 \text{ in}^2$. With one possible selection, the self weight is $\approx 25 \text{ lb/ft}$, new $S_{req'd} \approx 214 \text{ in}^3$, $A_{req'd} \approx 103 \text{ in}^2$. $\Delta_{(LL)} \approx 0.2 \text{ in.}$