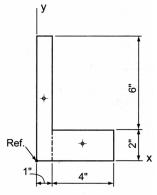
ENDS 231 S2008abn

## ENDS 231. Assignment #6

**Date:** 2/26/08, due 3/4/08

Pass-fail work

**Problems:** from Onouye, Chapters 7 & 8.


Note: Problems marked with a \* have been altered with respect

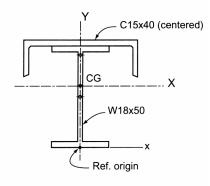
to the problem stated in the text.

(20%)\*7.3.2 Find the  $I_x$  and  $I_y$  for the L-shaped cross-section shown. (*moment of inertia*)

\*Use the negative area method.

Partial answers to check with: 
$$\hat{x} = 1.75$$
 in,  $\hat{y} = 2.5$  in,  $I_x = 81.33in^4$ ,  $I_y = 36.33in^4$ 

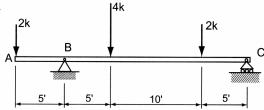



Problem 7.3.2

(20%)\*7.3.4 A heavily loaded floor system uses a composite steel section as shown. A C15 × 40 channel section is attached to the top flange of the W18 × 50. Determine the  $I_x$  and  $I_y$  about the major centroidal axes using the cross-sectional properties given in the steel tables for standard rolled shapes (see Appendix). (*moment of inertia*)

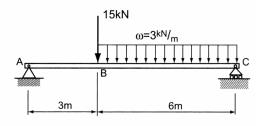
## \*Also calculate radius of gyration, rx and rv.

Partial answers to check with: 
$$\hat{x} = 0$$
,  $\hat{y} = 12.9in$ .,  $I_x = 1309 \text{ in.}^4$ ,  $I_y = 389 \text{ in.}^4$ 


$$T_x = 1309 \text{ in. }, T_y = 389 \text{ in}$$
  
 $r_x = 7.03 \text{ in, } r_y = 3.83 \text{ in}$ 

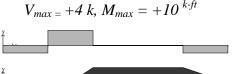


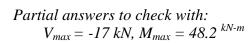
Problem 7.3.4


\*Construct the load, shear and bending moment diagram for the following using the SEMIGRAPHICAL method, and <u>verifying</u> key values with the EQUILIBRIUM method. Identify maximum quantities and locations of shear and bending moment. Multiframe4D may be used *only* to verify calculations.

 $(30\%) *8.4.\overline{1}$ 




Problem 8.4.1


(30%) \*8.4.4



Problem 8.4.4

Partial answers to check with:





