ENDS 231. Assignment #10

Date: 4/3/08, due 4/10/08

Pass-fail work

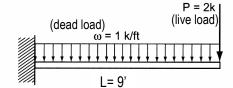
Problems: from Onouye, Chapters 9 & 10.

Note: Problems marked with a * have been altered with respect to the problem stated in the text. Multiframe4D may be used.

many come is many se used.

(15%) *Use A992 steel. The length has been changed to 9 ft.

Also use LRFD design method and the beam diagram to select a W10 (fully braced) knowing the distributed load is dead load and the point load is a live load. Check the shear stress and determine the deflection at the free end.

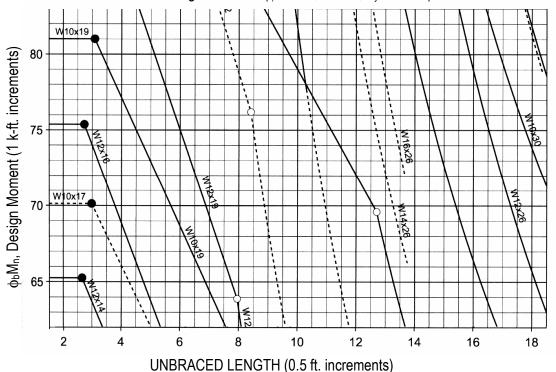

$$(F_y = 50 \text{ ksi}, F_{yw} = 50 \text{ ksi}, E = 30,000 \text{ ksi}, \gamma_L = 1.6, \gamma_D = 1.2, \phi_b = 0.9, \phi_v = 0.9)$$
 (LRFD)

(25%) *9.1.21 Assuming A992 steel, select the most economical W10 section. Check the shear stress and determine the deflection at the free end. (allowable stress design and deflection)

$$F_b = 33 \text{ ksi}$$

 $F_v = 20 \text{ ksi}$

 $E = 30 \times 10^3 \text{ ksi}$


Problem 9.1.21

Partial answers to check with:

ASD design:
$$f_b = 30.7 \text{ ksi}$$
, $f_v = 4.6 \text{ ksi}$, $\Delta = 0.65 \text{ in}$.

LRFD design:
$$M_u = 77.4 \text{ k-ft}, V_u = 14 \text{ k}, \phi V_n = 69.1 \text{ k}, \Delta = 0.79 \text{ in}$$

Beam Design Moments ($\phi_b = 0.9$, $C_b = 1$, $F_v = 50$ ksi)

MORE NEXT PAGE

ENDS 231 S2008abn

(15%) |*Use US customary units.

10.2.3 Determine the maximum critical length of a W10×54 (W250x80) column supporting an axial load of 250 kips $(1.112.x\ 10^3\ MN)$. $E = 29 \times 10^3\ ksi\ (E = 200\ x\ 10^3\ MPa)$. (Euler buckling formula)

Partial answers to check with:

$$L_x = 49 \text{ ft}$$
, $L_y = 28.6 \text{ ft}$ (make choice)

No picture for 10.2.3

P=25k (111 kN)

8" \(\phi \) (203 mm)

timber pole

(25%)*10.2.4 An 8"-diameter timber pole is fixed into a large concrete footing at grade and is completely pin connected at its upper end. How high can the pole be and still just support a load of 25 kips? $E = 1.0 \times 10^6$ psi. Solve this problem assuming the diameter is 203 mm, and the load to be supported is

111 kN $E = 6.895 \times 10^3 MPa$). |*(The SI values have been corrected.)

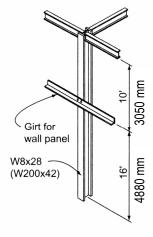
(Euler buckling formula)

Partial answers to check with:

$$I_x = 201 \text{ in}^4, K=0.7, L = 33.6 \text{ ft}$$

 $I_x = 83.4 \times 10^6 \text{ mm}^4, L = 10.2 \text{ m}$

Problem 10.2.4


L=unknown

(20%) *Use metric units. (The SI values have been corrected.)

10.2.6 Determine the critical buckling load and stress for the W8×28 (W200x42) column shown. $E = 29 \times 10^3$ ksi $(E = 200 \times 10^3 \text{ MPa}). \text{ (*1 MPa} = \text{N/mm}^2)$ (Euler buckling formula)

Partial answers to check with:

$$L_{e'}/r_x = 90.5$$
 and $L_{e'}/r_y = 118.7$, $P_{cr-x} = 1281$ kN, $P_{cr-y} = 748$ kN, $f_{cr} = 141$ MPa

Problem 10.2.6