PRACTICE FINAL EXAMINATION updated 4/30/08

ENDS 231. Practice Final Examination

Aids Allowed: Two marked 8.5" x 11" crib pages

(2 pages written on one side only or 1 page written on both sides)

Silent non-programmable calculator

Reference Formulas

(Provided at exam time)

Clearly show all your work and record your final answers with the units specified in the boxes.

Problem 1) Worth 45%

- A 12 ft beam with live and dead loading is shown in Figure 1a.
- The cross section geometry of the beam is shown in Figure 1c.
- The material is Giggium steel with E=32,000 ksi, $F_b=60$ ksi, $F_v=35$ ksi, $F_v=45$ ksi, and $F_u=65$ ksi.
- The beam end connection is detailed in Figures 1d and 1e. The angle legs are 3/8" thick, with 7/8 in diameter bolts of A325-N and standard holes.
- The weld material is E70XX.

FIND:

- a) The completed bending moment diagram in Figure 1b, and M_{max} .
- b) The moment of inertia for the cross section by completing the chart of Figure 1f.
- c) The maximum bending stress in the beam.
- d) The maximum shear stress in the beam.
- e) The deflection at the free end *D* due to *live load* only.
- f) The number of bolts required for shear at the beam shear connection at end A.
- g) The bearing force allowed at the beam shear connection when 4 bolts are used.
- h) The minimum weld size required for shear for the angles to the column if the length on each angle is 3.5 in.

	A (in²)	I _x (in ⁴)	d _y (in)	Ad _y ² (in ³)
semicircle				
web	12.75	76.77	2.31	68.04

Figure 1f.

Figure 1b.

Figure 1d. (elevation)

Figure 1e. (plan)

a)		b)	248.5 in ⁴	c)
d)	3.7 ksi	e)	-1.33 in (up)	f) 2 bolts (1.7 required)
g)	204.9 k	h)	Disclaimer: Ans	wers have NOT been painstakingly researched.

5 in

Figure 1c.

Problem 2) Worth 45%

- A parallel chord truss is shown in the Figure 2a has the following support reactions:
 - $A_x = 100 \text{ lb}, A_y = 267.5 \text{ lb}, E = -267.5 \text{ lb}.$
- Wind load is considered.
- The truss is constructed with glu-lam lumber having $E = 1.85 \times 10^6$ psi, $\alpha = 3.8 \times 10^{-6}$ /°F, $F_c = 1700$ psi (no adjustment factors applied), allowable tension stress $F'_t = 1200$ psi (adjustment factors applied), and allowable bearing stress $F'_p = 650$ psi (adjustment factors applied).
- The truss members are 3.125 in. x 6 in. with $I_x = 56.25$ in⁴, and $I_y = 15.25$ in⁴.
- The bottom chord that is continuous the length of the truss is connected as shown in Figure 2b.
- The top chord that is continuous is laterally braced at each end and across the span as show in Figure 2c. The ends are considered to be pinned.

FIND:

- The member forces in <u>AB and AH</u> using the method of joints.
- j) The member forces in <u>BG and BC</u> using the method of sections.
- k) The minimum area required for member <u>HG</u> if the tension force is 6.3 kips.
- 1) The stress value and type in member AB resulting from a temperature decrease of 15° F (with no loading) if the member can only shorten by 0.003 inches.
- m) The critical value of F_{CE} for the upper chord and the ratio used to find C_p .
- n) The allowable buckling load for the lower chord if C_p has been determined to be 0.403 for the weak axis and 0.214 for the strong axis.
- o) The minimum number of 5/8 in. diameter bolts required and their arrangement for the connection shown in Figure 2b if the maximum tension force in either member is 7.5 kips and the bolt holes are 3/4" in diameter.

Figure 2c. (top view of bracing)

j)		j)	k)	
1) 63	3.3 psi in tension	m)	n)	10.9 k
o) 6 bolts in 2 rows of 3 (\leq 5.3 net tension & \geq 5.9 bearing)				Disclaimer: Answers

Disclaimer: Answer
have NOT been
painstakingly researched.