ENDS 231. Practice Final Examination

Aids Allowed: Two marked 8.5" x 11" crib pages (2 pages written on one side only or 1 page written on both sides)

Silent non-programmable calculator Reference Formulas
(Provided at exam time)

Clearly show all your work and record your final answers with the units specified in the boxes.

Problem 1) Worth 45\%

- A 12 ft beam with live and dead loading is shown in Figure 1a.
- The cross section geometry of the beam is shown in Figure 1c.
- The material is Giggium steel with $\mathrm{E}=32,000 \mathrm{ksi}$,
$\mathrm{F}_{\mathrm{b}}=60 \mathrm{ksi}, \mathrm{F}_{\mathrm{v}}=35 \mathrm{ksi}, \mathrm{F}_{\mathrm{y}}=45 \mathrm{ksi}$, and $\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$.
- The beam end connection is detailed in Figures 1d and 1e. The angle legs are $3 / 8$ " thick, with $7 / 8$ in diameter bolts of A325-N and standard holes.
- The weld material is E70XX.

FIND:
a) The completed bending moment diagram in Figure 1b, and $M_{\text {max }}$.
b) The moment of inertia for the cross section by completing the chart of Figure 1f.
c) The maximum bending stress in the beam.
d) The maximum shear stress in the beam.

Figure 1b.

Figure 1c.

Figure 1d. (elevation)

- angles with

Figure 1e. (plan)

Figure 1f.

a)	b) $\quad 248.5 \mathrm{in}^{4}$	c)		
d)	3.7 ksi	e)	-1.33 in (up)	f) 2 bolts (1.7 required)
g)	204.9 k	h)	Disclaimer: Answers have NOT been painstakingly researched.	

Problem 2) Worth 45\%

- A parallel chord truss is shown in the Figure 2a has the following support reactions:

$$
A_{x}=100 \mathrm{lb}, A_{y}=267.5 \mathrm{lb}, E=-267.5 \mathrm{lb}
$$

- Wind load is considered.
- The truss is constructed with glu-lam lumber having $\mathrm{E}=1.85 \times 10^{6} \mathrm{psi}, \alpha=3.8 \times 10^{-6} /{ }^{\circ} \mathrm{F}, \mathrm{F}_{\mathrm{c}}=1700 \mathrm{psi}$ (no adjustment factors applied), allowable tension stress $\mathrm{F}_{\mathrm{t}}{ }^{\prime}=1200$ psi (adjustment factors applied), and allowable bearing stress $\mathrm{F}_{\mathrm{p}}=650$ psi (adjustment factors applied).
- The truss members are 3.125 in. x 6 in. with $\mathrm{I}_{\mathrm{x}}=56.25 \mathrm{in}^{4}$, and $\mathrm{I}_{\mathrm{y}}=15.25 \mathrm{in}^{4}$.
- The bottom chord that is continuous the length of the truss is connected as shown in Figure 2b.
- The top chord that is continuous is laterally braced at each end and across the span as show in Figure 2c. The ends are considered to be pinned.

FIND:
i) The member forces in AB and AH using the method of joints.

Figure 2a.

Figure 2c. (top view of bracing)
j) The member forces in BG and BC using the method of sections.
k) The minimum area required for member $\underline{\mathrm{HG}}$ if the tension force is 6.3 kips.
l) The stress value and type in member AB resulting from a temperature decrease of $15^{\circ} \mathrm{F}$ (with no loading) if the member can only shorten by 0.003 inches.
$m)$ The critical value of $F_{C E}$ for the upper chord and the ratio used to find C_{p}.
n) The allowable buckling load for the lower chord if C_{p} has been determined to be 0.403 for the weak axis and 0.214 for the strong axis.
o) The minimum number of $5 / 8$ in. diameter bolts required and their arrangement for the connection shown in Figure 2b if the maximum tension force in either member is 7.5 kips and the bolt holes are $3 / 4$ " in diameter.

j)	j)	k)
l) 63.3 psi in tension	$\mathrm{m})$	$\mathrm{n})$
o) 6 bolts in 2 rows of $3(\leq 5.3$ net tension $\& \geq 5.9$ bearing $)$	10.9 k	

Problem 3) Worth 10\% (conceptual questions)

