Connections and Tension Member Design

Connections

Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column.

Steel construction accomplishes this with bolt and welds. Wood construction uses nails, bolts, shear plates, and split-ring connectors.

Bolted and Welded Connections

The limit state for connections depends on the loads:

- 1. tension yielding
- 2. shear yielding
- 3. bearing yielding
- 4. bending yielding due to eccentric loads
- 5. rupture

Welds must resist tension AND shear stress. The design strengths depend on the weld materials.

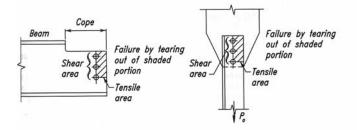


Fig. C-J4.1. Failure for block shear rupture limit state.

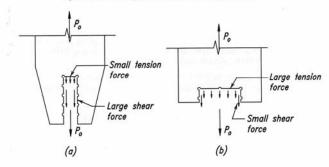


Fig. C-J4.2. Block shear rupture in tension.

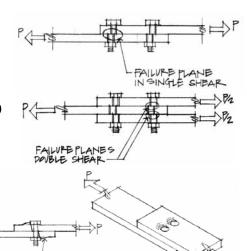
Bolted Connection Design

Bolt designations signify material and type of connection where

SC: slip critical

N: bearing-type connection with bolt threads *included* in shear plane

X: bearing-type connection with bolt threads *excluded* from shear plane


Bolts rarely fail in **bearing**. The material with the hole will more likely yield first.

Standard bolt holes are 1/16" larger than the bolt diameter.

ASD

Allowable shear values are given by bolt type, connection type, hole type, diameter, and loading (Single or Double shear) in AISC manual tables.

Allowable bearing force values are given by bolt diameter, ultimate tensile strength, $F_{\rm u}$, of the connected part, and thickness of the connected part in AISC manual tables.

BOLTS, THREADED PARTS AND RIVETS

Allowable load in kips

	100	ASIM	Desig-	nation	- Indiana	A307			A325					A490			A502-1	A502-2 A502-3	A36 (F _v =58 ksi)		A572, Gr. 50 (F _e =65 ksi)	apeau	F A588 (F ₌ =70 ksi)	
-	-	Ė.	ection	Type	26.	I		Class	•	z	×		Class	4	z	×	1	1	z	×	z	×	z	
		Hole	Type	PÁ		STD	STD	ovs,	TST	STD, NSL	STD, NSL	STD	OVS, SSL	TST	STD, NSL	STD, NSL	STD	STD	STD	STD	STD	STD	STD	
ABLE		ı,	ksi	2		10.0	17.0	15.0	12.0	21.0	30.0	21.0	18.0	15.0	28.0	40.0	17.5	22.0	6.6	12.8	11.1	14.3	11.9	
		Load-	pui	20		ഗമ	တဝ	sα	တဝ	മ	ഗവ	တဝ	മ	മ	മ	മ	മ	ഗമ	sα	ωa	sα	တဝ	တဝ	
		8%			3068	5.1	5.22	4.60	3.68	6.4	9.2 4.8	6.44	5.52	9.20	8.6 17.2	12.3	10.7	13.5	9.0	3.9	3.4	4.4	3.7	
מונא		3/8	Area		.4418	4.4 8.8	7.51	6.63		9.3 18.6	13.3	9.28 18.6	7.95	6.63	12.4 24.7	17.7	7.7 15.5	19.4	8.7	11.3	9.8	6.3	5.3	
	2	7/8	ea (Based	200	.6013	12.0	10.2	9.02	7.22	12.6 25.3	18.0	12.6	10.8	9.02	16.8	24.1 48.1	10.5	13.2	11.9	15.4	13.3	17.2	14.3	
Nominal Diameter	Illuai Dia		8	1	.7854	7.9	13.4	11.8	9.42 18.8	16.5 33.0	23.6	16.5 33.0	14.1	11.8	22.0 44.0	31.4 62.8	13.7	17.3	7.8 15.6	20.1	8.7 17.4	11.2	18.7	
ameter d.		11/8	Nominal Diameter	0,00	.9940	9.9 9.9	16.9	14.9	11.9	20.9	29.8 59.6	20.9	17.9 35.8	14.9 29.8	27.8 55.7	39.8 79.5	17.4 34.8	21.9	9.8 19.7	12.7 25.4	1.0	14.2	11.8	
<u>.</u>	= 1	11/4			1.227	12.3	20.9	18.4	14.7	25.8 51.5	36.8	25.8 51.5	22.1 44.2	18.4 36.8	34.4	49.1 98.2	21.5 42.9	27.0 54.0	12.1 24.3	15.7 31.4	13.6	17.5 35.1	14.6 29.2	
		13/8	in.²		1.485	14.8	25.2	22.3	17.8	31.2	89.1	31.2	53.5	22.3	41.6 83.2	59.4 119.0	26.0 52.0	32.7 65.3	14.7	19.0 38.0	16.5 33.0	21.2 42.5	17.7 35.3	
		11/2		-	1.767	35.3	30.0	26.5	21.2	37.1	53.0	37.1	31.8	26.5 53.0	49.5 99.0	70.7	30.9 61.8	38.9	17.5 35.0	22.6 45.2	19.6	25.3	21.0	

Rearing-type connection with threads included in shear plane.
 X. Bearing-type connection with threads excluded from shear plane.
 STD: Sandard round holes (d + γ/s in).
 OVS
 Lung-slotted holes normal to load direction
 SSI. Long-or short-slotted hole normal to load direction

OVS: Oversize round holes SSL: Short-slotted holes

(required in bearing-type connection)

8. Single shear D. Double shear.

To the first of the shear in the shear in the shear plane.

To the shear plane in the shear plane.

To the shear plane in the shear plane.

To the shear plane.

To the shear plane in the shear plane.

To the shear plane in the shear plane.

To the shear plane in the shear plane in the shear plane.

The shear plane is the shear plane in the shear plane.

The shear plane is the shear plane in the shear plane in the shear plane.

The shear plane is the shear plane in the shear plane in the shear plane.

The shear plane is the shear plane in the shear plane in the shear plane.

The shear plane is the shear plane in the shear plane in the shear plane.

The shear plane is the shear plane in the shear plane is the shear plane.

The shear plane is the shear plane is the shear plane.

The shear plane is the shear plane is the shear plane.

The shear plane is the shear plane is the shear plane.

The shear plane is the shear plane is the shear plane.

The shear plane is th

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

BOLTS AND THREADED PARTS Allowable loads in kips

TABLE I-E. BEARING

						_	_			_	_	_				
	ksi	-	15.0	22.5	300	37.5	45.0	52.5	60.0							120.0
	$F_{\nu} = 100 \text{ ksi}$ Bolt dia.	8/2	13.1	19.7	26.3	32.8	39.4	45.9								105.0 120.0
Suc	F _u	3/4	11.3	16.9	22.5	28.1	33.8									90.0
nection	·is	-	10.5	15.8	21.0	26.3	31.5	36.8	45.0	47.3	52.5	57.8				84.0
Con	$F_{\nu} = 70 \text{ ksi}$ Bolt dia.	2/8	9.5	13.8	18.4	23.0	27.6	32.2	36.8	41.3	45.9					73.5
-type	J. 1	3/4	7.9	11.8	15.8	19.7	23.6	27.6	31.5							63.0
aring	is .	1	9.8	14.6	19.5	24.4	29.3	34.1	39.0	43.9	48.8	53.6	58.5			78.0
d Be	$F_{\nu}=65 \text{ ksi}$ Bolt dia.	7/8	8.5	12.8	17.1	21.3	25.6	29.9	34.1	38.4	42.7	46.9				68.3
al an	J.	3/4	7.3	11.0	14.6	18.3	21.9	25.6	29.3	32.9		7.10				58.5
Slip-critical and Bearing-type Connections	is	-	8.7	13.1	17.4	21.8	26.1	30.5	34.8	39.2	43.5	47.9	52.2	56.6		9.69
Slip	$F_{\nu} = 58 \text{ ksi}$ Bolt dia.	2/8	7.6	11.4	15.2	19.0	22.8	26.6	30.5	34.3	38.1	41.9	45.7		.,	6.09
	F.	3/4	6.5	9.8	13.1	16.3	19.6	22.8	26.1	29.4	32.6					52.2
	Mate- rial	ness	1/8	3/16	7,	5/16	3%	7/16	1/2	9/16	9%	11/16	3/4	13/16	15/16	-

This table is applicable to all mechanical fasteners in both slip-critical and bearing-type connections utilizing standard holes. Standard holes shall have a diameter nominally Vielin larger than the nominal bolt diameter (d + 1/16 in.).

Tabulated bearing values are based on $F_p = 1.2 F_v$.

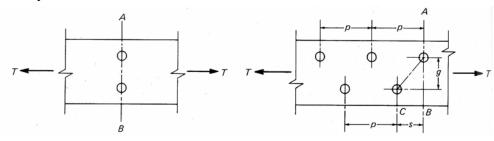
In connections transmitting axial force whose length between extreme fasteners measured Connections using high-strength bolts in slotted holes with the load applied in a direction other than approximately normal (between 80 and 100 degrees) to the axis of the hole and connections with bolts in oversize holes shall be designed for resistance against slip at workparallel to the line of force exceeds 50 in., tabulated values shall be reduced 20%. $F_{\nu}=$ specified minimum tensile strength of the connected part.

Tabulated values apply when the distance I parallel to the line of force from the center of the bolt to the edge of the connected part is not less than 1% d and the distance from the center of a bolt to the center of an adjacent bolt is not less than 3d. See AISC ASD Commentary of a bolt to the center of an adjacent bolt is not less than 3d. See AISC ASD Commentary of a bolt to the center of an adjacent bolt is not less than 3d. See AISC ASD Commentary of a bolt to the center of an adjacent bolt is not less than 3d. ing load in accordance with AISC ASD Specification Sect. J3.8.

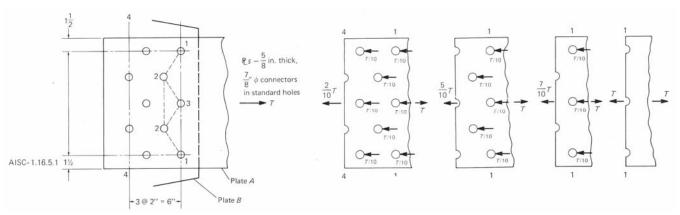
Under certain conditions, values greater than the tabulated values may be justified under

Specification Sect. J3.7.

Values for decimal thicknesses may be obtained by multiplying the decimal value of the un-Values are limited to the double-shear bearing capacity of A490-X bolts. isted thickness by the value given for a 1-in. thickness.


AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Tension Member Design


In steel tension members, there may be bolt holes that reduce the size of the cross section.

Effective Net Area:

The smallest effective are must be determined by subtracting the bolt hole areas. With staggered holes, the shortest length must be evaluated.

A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.

ASD

For other than pin connected members: $F_t = 0.60F_v$ on gross area

 $F_{t} = 0.50 F_{u}$ on net area

For pin connected members: $F_t = 0.45F_y$ on net area

For threaded rods of approved steel: $F_t = 0.33F_u$ on major diameter (static loading only)

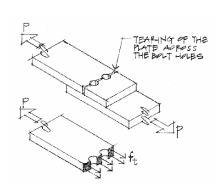
LRFD

The limit state for tension members are:

$$P_u \leq \phi_t P_n$$

1. yielding

$$\phi_t = 0.9$$
 $P_n = F_v A_g$


2. rupture

$$\phi_t = 0.75 \quad P_n = F_u A_e$$

 $\begin{array}{cc} \text{where} & A_g = \text{the gross area of the member} \\ & (\text{excluding holes}) \end{array}$

 A_e = the effective net area (with holes, etc.)

 F_u = the tensile strength of the steel (ultimate)

Welded Connections

Weld designations include the strength in the name, i.e. E70XX has $F_v = 70$ ksi.

The throat size, T, of a fillet weld is determined trigonometry by: $T = 0.707 \times \text{weld size}$

ASD

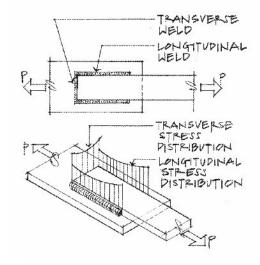
Allowable shear stress of a weld is limited to 30% of the nominal strength.

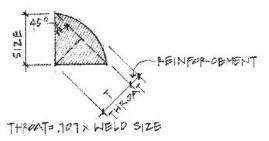
 $F_v = 18$ ksi for E60XX

 $F_v = 21$ ksi for E70XX

Weld sizes are limited by the size of the parts being put together and are given in AISC manual table J2.4 along with the allowable strength per length of fillet weld, referred to as *S*.

The maximum size of a fillet weld:

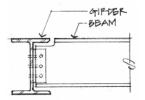

a) can't be greater than the material thickness if it


is 1/4" or less

b) is permitted to be 1/16" less than the thickness of the material if it is over 1/4"

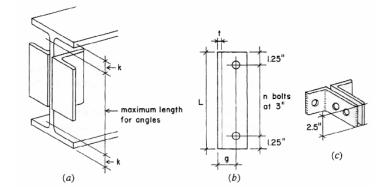
The *minimum length* of a fillet weld is 4 times the nominal size. If it is not, then the weld size used for design is ½ the length.

Intermittent fillet welds can not be less that four times the weld size, not to be less than $1\frac{1}{2}$.



Allowable	e Strength of Fi	llet Welds
pe	er inch of weld ((S)
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
$\frac{3}{16}$	2.39	2.78
1/4	3.18	3.71
5/ ₁₆	3.98	4.64
3/8	4.77	5.57
7/16	5.57	6.94
1/2	6.36	7.42
5/8	7.95	9.27
3/4	9.55	11.13

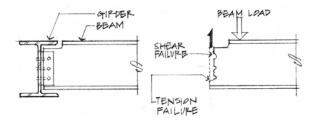
TABLE J2.4
Minimum Size of Fillet Welds


Material Thickness of Thicker	Minimum Size of Fillet
Part Joined (in.)	Weld ^a (in.)
To 1/4 inclusive Over 1/4 to 1/2 Over 1/2 to 3/4 Over 3/4	½ 3/16 1/4 5/16

Framed Beam Connections

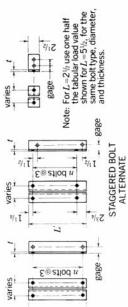
Coping is the term for cutting away part of the flange to connect a beam to another beam using welded or bolted angles.

AISC provides tables that give angle sizes knowing bolt type, bolt diameter, angle leg thickness, and number of bolts (determined by *shear* capacity).


Load and Factor Resistance Design

In addition to resisting shear and tension in bolts and shear in welds, the connected materials may be subjected to shear, bearing, tension, flexure and even prying action. Coping can significantly reduce design strengths and may require web reinforcement. All the following must be considered:

- shear yielding
- shear rupture
- block shear rupture -


failure of a block at a beam as a result of shear and tension

- tension yielding
- tension rupture
- local web buckling
- lateral torsional buckling

FRAMED BEAM CONNECTIONS

ALTERNATE	TABLE II-A Bolt Shear ^a

Ξ	Bolt Type		A307		٩	A325-SC	0	•	A490-SC	0	
1.5	F, Ksi		10.0			17.0			21.0		Note:
0 =	Bolt Dia., d In.	3%	3/6	-	3/4	%	1	3/6	8/2	-	For slip-critical connections
Thick	Angle Thickness t, In.	7,	1/4	7.	1/4	5/16	1/2	81/6	1/2	%	or slotted holes, see
	<i>L' n</i> ln.										Table II-B.
28%	31 10	88.4	120	157	150	204	267	186	253	330	
28%	28 9	79.5	108	141	135	184	240	167	227	297	
231/2	25 8	70.7	96.2	126	120	164	214	148	202	264	
20%	22 7	61.9	84.2	110	105	143	187	130	177	231	
17/2	9 61	53.0	72.2	94.2	90.1	123	160	Ξ	152	198	
-	16 5	44.2	60.1	78.5	75.1	102	134	92.8	126	165	
11%	13 4	35.3	48.1	62.8	60.1	81.8	107	74.2	101	132	
81/2	10 3	26.5	36.1	47.1 ^b	45.1	61.3	80.1	55.7	75.8	99.0	
21%	7	177	24.1	31 Ab	30.0	000	F2 4	27.4	50.5	0 99	

Tabulated load values are based on double shear of bolts unless noted. See RCSC Specification for other surface conditions. Capacity shown is based on double shear of the bolts; however, for length L, net shear on the angle thickness specified is critical. See Table II-C.

Note: For $L=2^{1}$ 2 use one half the tabular load value shown for $L=5^{1}$ 3, for the same bolt type, diameter, and thickness. FRAMED BEAM CONNECTIONS TABLE II Allowable loads in kips gage STAGGERED BOLT ALTERNATE €@ stlod n ₺/t Ī E@stlod n

		-	300	1			ile.						
A490-X	40.0	8/2	8/8		1	7	S.A.		588	245	192	4	-
		3/4	1/2		353	318	283	247	212	171	141	106	
		-	8/8					Choton			188	141	
A325-X	30.0	7/8	8/8		361	325	289	253	216	180	44	108	200
		3/4	3/8		265	239	212	186	159	133	106	79.5	-
		-	5/8			396							
A490-N	28.0	7/8	1/2			38							
•		3/4	3/8		247	223	198	173	148	124	99.0	74.2	
		-	5/8		-	297							
A325-N	21.0	7/8	3/8			227		23:	83	100		75.8	
		3/4	5/16		186	167	148	130	11	92.8	74.2	55.7	,
9		D	ess		10	6	80	7	9	2	4	e	•
Bolt Type	Fv, Ksi	Dia., In.	Thickn t, In.	7,	3	28	25	22	19	16	13	유	1
Bolt	πŽ	Bolt Dia., d In.	Angle Thickness t, In.	7	291%	261/2	231/2	201/2	171/2	141/2	111/2	81/2	i

Tabulated load values are based on double shear of bolts.

Shaded values are based on double shear of the bolts; however, for length L, net shear on the angle thickness specified is critical. See Table II-C.

For shaded cells without values, shear rupture is critical for lengths L and L' on angle thickness specified. See Table II-C.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Example 1

10.2 The butt splice shown in Figure 10.22 uses two 8 × $\frac{3}{6}$ " plates to "sandwich" in the 8 × $\frac{1}{6}$ " plates being joined. Four $\frac{7}{6}$ " ϕ A325-SC bolts are used on both sides of the splice. Assuming A36 steel and standard round holes, determine the allowable capacity of the connection.

Solution:

Shear, bearing, and net tension will be checked to determine the critical condition that governs the capacity of the connection.

(Table I-D)

Shear: Using the AISC allowable shear in Table 10.1:

$$P_v = 20.4 \text{ k/bolt} \times 4 \text{ bolts} = 81.6 \text{ k} \text{ (double shear)}$$
(Table I-E)

Bearing: Using the AISC bearing in Table 10.2:

The thinner material with the largest proportional load governs, therefore, the $\frac{1}{2}$ " center plate governs. Assume the bolts are at a 3d spacing, center to center.

$$P_b = 30.5 \,\mathrm{k/bolt} \times 4 \,\mathrm{bolts} = 122 \,\mathrm{k}$$

Tension: The center plate is critical since its thickness is less than the combined thickness of the two outer plates.

Hole diameter = (bolt diameter) + $\frac{1}{16}$ " = $\frac{7}{8}$ " + $\frac{1}{16}$ " = $\frac{15}{16}$ ".

$$A_{net} = (8'' - 2 \times \frac{15}{16}'') \times (\frac{1}{2}'') = 3.06 \text{ in.}^2$$

$$P_t = F_t \times A_{\text{net}}$$

where:

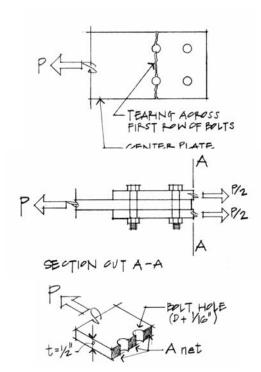
$$F_t = 0.5F_u = 0.5(58 \,\mathrm{ksi}) = 29 \,\mathrm{ksi}$$

$$P_t = 29 \,\mathrm{k/in.^2} \times 3.06 \,\mathrm{in.^2} = 88.7 \,\mathrm{k}$$

For yielding in the cross section without holes:

$$A_{gross} = (8'') \times (\frac{1}{2}'') = 4.0 \text{ in.}^2$$

$$P_t = F_t \times A_{gross}$$


where:

$$F_t = 0.6F_y = 0.6(36 \text{ ksi}) = 21.6 \text{ ksi}$$

$$P_t = 21.6 \text{ k/in.}^2 \times 4.0 \text{ in.}^2 = 86.4 \text{ k}$$

The maximum connection capacity is governed by shear.

$$P_{\text{allow}} = 81.6 \text{ k}$$

Example 2

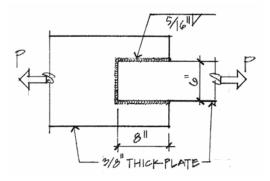
10.7 Determine the capacity of the connection in Figure 10.44 assuming A36 steel with E70XX electrodes.

Solution:

Capacity of weld:

For a $\frac{5}{16}$ " fillet weld, S = 4.64 k/in

Weld length = 22"


Weld capacity = $22'' \times 4.64$ k/in = 102.1 k

Capacity of plate:

$$F_t_{\text{allow}} = 0.6F_y = 22 \text{ ksi}$$

Plate capacity = $\frac{3}{6}$ " × 6" × 22 k/in.² = 49.5 k

∴ Plate capacity governs, $P_{\text{allow}} = 49.5 \text{ k}$

The weld size used is obviously too strong. What size, then, can the weld be reduced to so that the weld strength is more compatible to the plate capacity? To make the weld capacity \approx plate capacity:

 $22'' \times \text{(weld capacity per in.)} = 49.5 \text{ k}$

Weld capacity per inch =
$$\frac{49.5 \text{ k}}{22 \text{ in.}}$$
 = 2.25 k/in. (page 4)

From Table 10.5, use $\frac{3}{16}$ " weld (S = 2.78 k/in.).

Minimum size fillet = $\frac{3}{16}$ " based on a $\frac{3}{8}$ " thick plate.

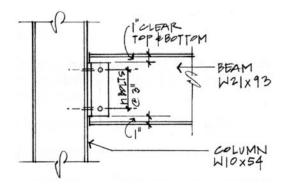
FRAMED BEAM CONNECTIONS BOLTED TABLE II Allowable loads in kips

١.											•			ı	ı
Bolt Dia., d In.	F		6	%				%					-		
Angle Thick- ness, t		7,	%16	%	1/2	*	5/16	%	%	%	7/	5/16	%	1/2	*
, In.	u														
_	_	158/7	232		372	175	219	263	350	438	164	-8		328	= 1
261/2	σ α	16/	209		296	130	136	200	314 278	348	13.1		196	295 368	8 8
201/2		129	161	193	258	121	152	182	243	303	terrane.	142		227	इ ह
171/2	9	444	137		220	103	-	155	207	258	96.8			194	25
141/2	2	90.8 114	114		182	85.4	107	128	171	213	79.9	6	120	160	S
111/2	4	71.8	89.7	108	144	67.4		5	135	169	63.1	78.8		126	認
81/2	က	52.7	62.9	79.1 105	105	49.5		74.2	0.66	124	46.2	57.8		92.4	116
2	2	33.7	42.1	50.6	67.4	31.5	39.4		63.1	78.8	29.4	36.7	44.0	58.7	73.4
, In.	-														
-	10	199	249	299	398	188	235	282	376	470	177	222		355	\$
	6	180	225	270	360	170	213	255	340	425	160	201		321	\$
		161	201	241	322	152	190	228	305	381	144		215	287	88
52		142	177	213	284	134	168	201	569	336	127	158	190	253	317
	_	123	154	184	246	116	145	175	233	291	110	546	165	220	275
un lige		104	130	156	208	98.4	98.4 123	148	197	546	93.0 116		139	186	x
1001	4	84.8	106	127	170	80.5	101	121	161	201	76.1		114	152	8
	6	65.8 82.3	82.2	98.7	132	62.5	62.5 78.2	93.8	125	156	59.3		88.9119	119 148	磊
9416	C	400	100		7	***	1		-	, ,			000		5

NOTES: Table based on an allowable shear of 0.3*F_u* (17.4 ksi for A36 angles) of the net section of two angles.

Net section based on diameter of fastener + ½,e in.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION


Example 3

The steel used in the connection and beams is A992 with $F_y = 50$ ksi, and $F_u = 65$ ksi. Using A490-N bolt material, determine the maximum capacity of the connection based on shear in the bolts, bearing in all materials and pick the number of bolts and angle length (not staggered). Use A36 steel for the angles.

W21x93:
$$d = 21.62$$
 in, $t_w = 0.58$ in, $t_f = 0.93$ in

W10x54: $t_f = 0.615$ in

SOLUTION:

The maximum length the angles can be depends on how it fits between the top and bottom flange with some clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts. This example uses 1" of clearance:

Available length = beam depth - both flange thicknesses - 1" clearance at top & 1" at bottom

$$= 21.62 \text{ in } - 2(0.93 \text{ in}) - 2(1 \text{ in}) = 17.76 \text{ in}.$$

The standard lengths for non-staggered holes (L) and staggered holes (L') are shown in Table II-A. The closest size within the available length is $17 \frac{1}{2}$ in. This will fit 6 bolts (n) with a standard spacing.

We have a choice of bolt diameters of ¾", 7/8" and 1" in Table II-A. These have allowable loads for **shear** (double) of 148 kips, 202 kips, and 264 kips. But the last two values are shaded and the note says that "net shear on the angle thickness specified is critical" and to see Table II-C. The angle thickness (t) is listed below the bolt diameter.

Table II-C gives a value of 207 kips for a 7/8" bolt diameter, ½" angle thickness, and 17.5" length. It gives a value of 242 kips for a 1" bolt diameter, 5/8" angle thickness, and 17.5" length. Therefore, 242 kips is the maximum value limited by shear in the *angle*.

$$P_p = 264 \text{ kips}$$
 for double shear of 1" bolts (Table I-D: 6 bolts-(44 k/bolt) = 264 kips)

$$P_v = 242$$
 kips for net shear in angle

We also need to evaluate **bearing** of bolts on the angles, beam web, and column flange where there are bolt holes. Table I-E provides allowable bearing load for the material type, bolt diameter and some material thicknesses. The last note states that "Values for decimal thicknesses may be obtained by multiplying the decimal value of the unlisted thickness by the value given for a 1-in. thickness". This comes from the definition for bearing stress:

$$f_P = \frac{P}{td} \le F_p$$
, where $P_p = t \cdot d \cdot F_p$ at the allowable bearing stress

For a constant diameter and allowable stress, the allowable load depends only on the thickness.

a) Bearing for 5/8" thick angle: There are 12 bolt holes through two angle legs to the column, and 12 bolt holes through two angle legs either side of the beam. The material is A36 ($F_u = 58 \text{ ksi}$), with 1" bolt diameters.

$$P_p = 12 \text{ bolts} \cdot (43.5 \text{ k/bolt}) = 522 \text{ kips}$$

b) Bearing for column flange: There are 12 bolt holes through two angle legs to the column. The material is A992 ($F_u = 65 \text{ ksi}$), 0.615" thick, with 1" bolt diameters.

$$P_p = 12 \text{ bolts} \cdot (78 \text{ k/bolt/1"}) \cdot (0.615 \text{ in}) = 576 \text{ kips}.$$

c) Bearing for beam web: There are 6 bolt holes through two angle legs either side of the beam. The material is A992 ($F_u = 65$ ksi), 0.58" thick, with 1" bolt diameters

$$P_p = 6 \text{ bolts} \cdot (78 \text{ k/bolt/1"}) \cdot (0.58 \text{ in}) = 271 \text{ kips.}$$

Although, the bearing in the beam web is the smallest at 271 kips, with the shear on the bolts even smaller at 264 kips, the maximum capacity for the simple-shear connector is 242 kips limited by net shear in the angles.