Loads - Tracing, Concentrated and Distributed

Load Tracing

- LOAD TRACING is the term used to describe how the loads on and in the structure are transferred through the members (load paths) to the foundation, and ultimately supported by the ground.
- It is a sequence of actions, NOT reactions. Reactions in statically determinate members (using FBD's) can be solved for to determine the actions on the next member in the hierarchy.

- The tributary area is a loaded area that contributes to the load on the member supporting that area, ex. the area from the center between two beams to the center of the next two beams for the full span is the load on the center beam

- The tributary load on the member is found by concentrating (or consolidating) the load into the center.

$$
w=\left(\frac{\text { load }}{\text { area }}\right) x(\text { tributary width })
$$

where:
w = distributed load in units of load/length

Support Conditions \& Loading

- Types of loads:
- Concentrated - single load at one point
- Distributed - loading spread over a distance or area

- Types of supports:
- statically determinate
(number of unknowns \leq number of equilibrium equations)

simply supported
(most common)

overhang

cantilever
- Statically indeterminate:

Distributed Loads

Distributed loads may be replaced by concentrated loads acting through the balance/center of the distribution or load area: THIS IS AN EQUIVALENT FORCE SYSTEM.

- $\quad w$ is the symbol used to describe the load per unit length.
- W is the symbol used to describe the total load.

Example 1 (pg 168)

Example Problem 5.2

In the single-bay, post-and-beam deck illustrated, planks typically are available in nominal widths of 4 " or 6 ", butfor the purposes of analysis it is permissible to assume a unit width equal to one foot. Determine the plank, beam, and column reactions.
The loads are: $60 \mathrm{lb} / \mathrm{ft}^{2}$ live load, $8 \mathrm{lb} / \mathrm{ft}^{2}$ dead load, 10 $\mathrm{lb} / \mathrm{ft}$ self weight of 12^{\prime} beams, and 100 lb self weight of columns.

Example 2

EXAMPLE

Assume that the average dead plus live load on the structure shown in Figure 3.15 is $60 \mathrm{lbs} / \mathrm{ft}^{2}$. Determine the reactions for Beam D. This is the same structure as shown in Figure 3.1.

Solution:

Note carefully the directions of the decking span. Beam D carries floor loads from the jecking to the left (see the contributory area and load strip), but not to the right, since the

Figure 3.1

Live and dead load
Assume $w_{D L+L \bar{L}} 60 \mathrm{lbs} / / \mathrm{tt}^{2}$
Beam G carries distributed loads only
Find reactions for Beam G
$w=6 \mathrm{ft}\left(60 \mathrm{lbs} / \mathrm{ft}^{2}\right)=360 \mathrm{lb} / \mathrm{tt}$
$\underset{R_{G_{1}} \uparrow}{\text { Beam } G} \mathrm{~T}_{\mathrm{G}_{2}}$
$\mathrm{R}_{G_{1}}=w \mathrm{~L} / 2=(360 \mathrm{lb} / \mathrm{ft})(12 \mathrm{ft}) / 2=2160 \mathrm{lbs}$
$\mathrm{R}_{\mathrm{G}_{2}}=w \mathrm{~L} / 2=(360 \mathrm{lb} / \mathrm{tt})(12 \mathrm{ft}) / 2=2160 \mathrm{lbs}$
Beam D carries both distributed loads and the reaction $\mathrm{R}_{\mathrm{G}_{1}}$ from Beam G

$\Sigma M_{D_{1}}=0$
$-(12 \mathrm{ft})(2160 \mathrm{lb})-(360 \mathrm{lb} / \mathrm{tt})(20 \mathrm{ft})(20 \mathrm{ft} 2)+20 \mathrm{R}_{D_{\overline{1}}} 0$

$$
\mathrm{R}_{\mathrm{D}_{1}}=4896 \mathrm{lb}
$$

$\Sigma F_{y}=0$
$\mathrm{R}_{\mathrm{D}_{1}}+\mathrm{R}_{\mathrm{D}_{2}}=(360 \mathrm{lb} / \mathrm{tt})(20 \mathrm{ft})+2160 \mathrm{lb}$
$\mathrm{R}_{\mathrm{D}_{2}}=4464 \mathrm{lb}$

FIGURE 3.15 Load modeling and reaction determination.
center decking runs parallel to Beam D and is not carried by it. Beam D also picks up the end of Beam G and thus also "carries" the reactive force from Beam G. It is therefore necessary to analyze Beam G first to determine the magnitude of this force. The analysis appears in Figure 3.15. The reactive force from Beam G of 2160 lbs is then treated as a downward fore acting on Beam D. The load model for Beam D thus consists of distributed forces from the decking plus the $2160-\mathrm{lb}$ force. It is then analyzed by means of the equations of statics to obtain reactive forces of 4896 lbs and 4464 lbs at its ends.

Example 3 (pg 70)

Example Problem 3.12-Simple Beam

A simple beam supports two concentrated loads and a uniformly distributed load over 8 ft . of the span. See Figure 3.40. Construct a FBD of the beam and solve for the support reactions at A and B.

Example 4 (pg 71)
Example Problem 3.13-Overhang Beam (Figure 3.4I)

A single overhang beam supports a uniformly distributed load over an $8-\mathrm{ft}$. section and a triangular distribution over the remaining 12 ft . Draw the appropriate FBD and solve for the support reactions at A and B.

