Problem Solving, Units and Numerical Accuracy

Problem Solution Method:

2. Draw simple diagram of body/bodies \& forces acting on it/them.
3. Choose a reference system for the forces.
4. Identify key geometry and constraints.
5. Write the basic equations for force components.
6. Count the equations $\&$ unknowns.
7. SOLVE
8. "Feel" the validity of the answer. (Use common sense. Check units...)

Example: Two forces, A \& B, act on a particle. What is the resultant?

1. GIVEN: Two forces on a particle and a diagram with size and orientation

FIND: The "resultant" of the two forces
SOLUTION:
2. Draw what you know (the diagram, any other numbers in the problem statement that could be put on the drawing....)
3. Choose a reference system. What would be the easiest? Cartesian, radian?
4. Key geometry: the location of the particle as the origin of all the forces

Key constraints: the particle is "free" in space
5. Write equations:

$$
\begin{aligned}
& \text { size of } A^{2}+\text { size of } B^{2}=\text { size of resultant } \\
& \sin \alpha=\frac{\text { size of } B}{\text { size of } A+B}
\end{aligned}
$$

6. Count: Unknowns: 2, magnitude and direction \leq Equations: $2 \therefore$ can solve
7. Solve: graphically or with equations
8. "Feel": Is the result bigger than A and bigger than B? Is it in the right direction? (like A \& B)

Units

Units	Mass	Length	Time	Force
SI	kg	m	s	$\mathrm{N}=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}$
Absolute English	lb	ft	s	Poundal $=\frac{\mathrm{lb} \cdot \mathrm{ft}}{\mathrm{s}^{2}}$
Technical English	$\mathrm{slug}=\frac{\mathrm{lb}_{f} \cdot \mathrm{~s}^{2}}{\mathrm{ft}}$	ft	s	$\mathrm{lb}_{\text {force }}$
Engineering English	lb	ft	s	$\mathrm{lb}_{\text {force }}$
	$\mathrm{lb}_{\text {force }}=\mathrm{lb}_{(\text {mass })} \times 32.17 \mathrm{ft} / \mathrm{s}^{2}$			
gravitational constant	$g_{c}=32.17 \mathrm{ft} / \mathrm{s}^{2}$	(English)		
	$g_{c}=9.81 \mathrm{~m} / \mathrm{s}^{2}$	(SI)		
conversions (pg. vii)	$1 i n=25.4 \mathrm{~mm}$ $1 \mathrm{lb}=4.448 \mathrm{~N}$			

Numerical Accuracy

Depends on 1) accuracy of data you are given
2) accuracy of the calculations performed

The solution CANNOT be more accurate than the less accurate of \#1 and \#2 above!
DEFINITIONS: precision the number of significant digits accuracy the possible error

Relative error measures the degree of accuracy:
$\frac{\text { relative error }}{\text { measurement }} \times 100=$ degree of accuracy (\%)
For engineering problems, accuracy rarely is less than 0.2%.

