Applied Architectural Structures STRUCTURAL ANALYSIS AND SYSTEMS **ARCH 631 D**R. ANNE NICHOLS **F**ALL 2013

plates and grids

Plates & Grids 1 Lecture 8

Applied Architectural Structures ARCH 631

F2009abn

Term Project

Plates & Grids 2 Lecture 7

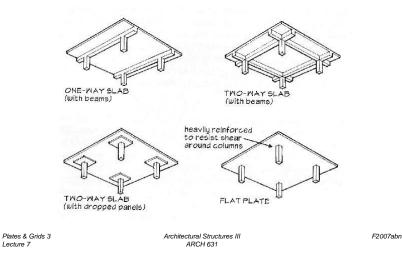
Lecture 7

Architectural Structures III ARCH 631

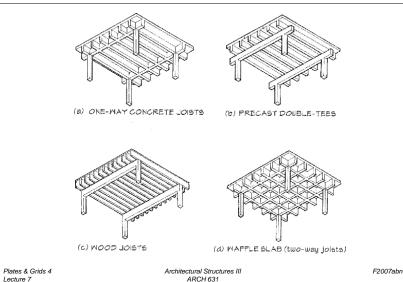
F2007abn

Plates, Slabs & Grids

- plates horizontal plane, rigid
- slabs thin, flat, rigid
 - extremely common in concrete
- grids crossed beams
- see
 - bending
 - shear

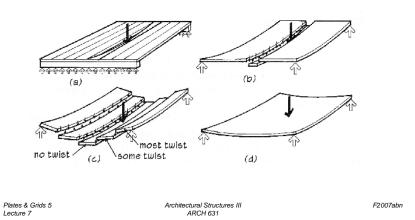

Plates & Grids 2 Lecture 7

Architectural Structures III ARCH 631


F2007abn

Plates, Slabs & Grids

• types & spanning direction



Plates, Slabs & Grids

Plates, Slabs & Grids

- loads & behavior
 - comparison with beams

Plate Structures

• waffles & grids http://www.bluffton.edu

http://nisee.berkeley.edu/godden

Plates & Grids 6 Lecture 7

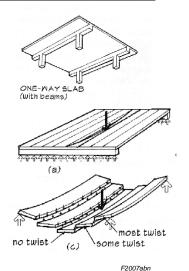
Architectural Structures III ARCH 631

F2007abn

Plates, Slabs & Grids

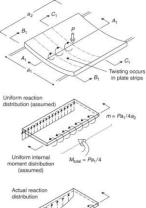
- compatibility
 - deflections same, even with stiffer side
 - stiffness \propto to EI L
 - twisting causes torsional stresses
- supports
 - at points
 - flexible

- continuous


Figure 8.47: The deformation of a beam grid due to an applied point load.

Plates & Grids 7 Lecture 7

Architectural Structures III ARCH 631


One-Way Plates

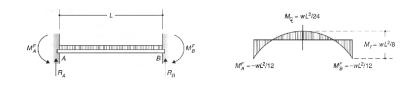
- with uniform loads
 - like "wide" beams
 - moment / unit width
 - uniform curvature
- with point loads
 - resisted by stiffness of adjacent strips
 - more curvature in middle

Moment Redistribution

- total moment for 1/2 plate
 - value from basic equilibrium
 - because of curvature, it isn't uniform at support
 - redistribution
 - bigger with big curvature
 - smaller with small curvature

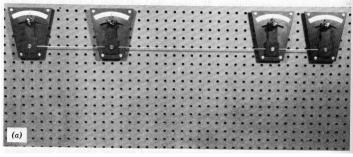
	STIL	-20
6	K	D /
	S	R
	~	Martin = Par/4
	Actual intern	al dian

Plates & Grids 9 Lecture 7 Architectural Structures III ARCH 631



 continuous slabs & beams with uniform loading

Architectural Structures III


ARCH 631

- joints similar to fixed ends, but can rotate
- change in moment to center = wL^2
 - $-M_{max}$ for simply supported beam 8

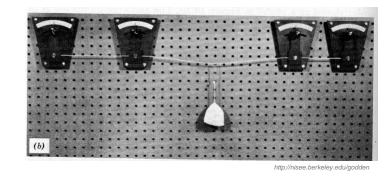
Moment Distribution Method (a)

no load

http://nisee.berkeley.edu/godden

Plates & Grids 11 Lecture 7 Architectural Structures III ARCH 631 F2007abn

Plates & Grids 10 Lecture 7

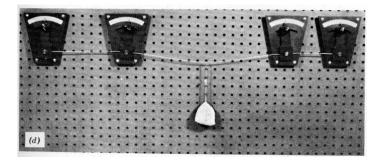

Plates & Grids 8

Lecture 7

Architectural Structures III ARCH 631

Moment Distribution Method (b)

• add load

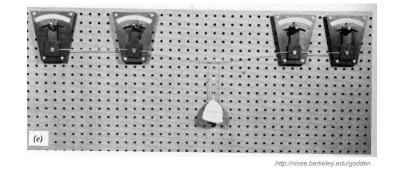


Plates & Grids	12		
Lecture 7			

Architectural Structures III ARCH 631

Moment Distribution Method (d)

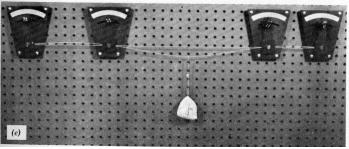
• release joint 3


Plates & Grids 14 Lecture 7

Architectural Structures III ARCH 631 F2007abn

F2007abn

Moment Distribution Method (c)


• release joint 2

Plates & Grids 13 Lecture 7 Architectural Structures III ARCH 631 F2007abn

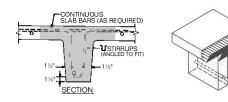
Moment Distribution Method (e)

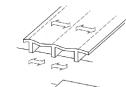
• exposure of final shape after cycles over initial shape

http://nisee.berkeley.edu/godden

Plates & Grids 15 Lecture 7 Architectural Structures III ARCH 631

Ribbed Plates




Plates & Grids 16 Lecture 7

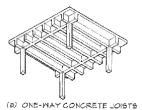
Architectural Structures III ARCH 631

Ribbed Plates

- design them as T-beams
 - flange compression
 - stem compression
- "effective" flange width

Walter P. Moore & Assoc.

F2007abn



Plates & Grids 18 Lecture 7

Architectural Structures III ARCH 631 F2007abn

Ribbed Plates

- typical in reinforced concrete
- pans can be standard or wide

6'-4" MODULE

10" Ribs @ 6'-4" Module Single 66" form or two 30" Forms + Cover

Figure 5 – Typical Wide-Module Joist Layout

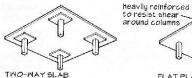
Plates & Grids 17

Lecture 7

ARCH 631

F2007abn

Plate Structures


slabs & columns

Plates & Grids 19 Lecture 7 Architectural Structures III ARCH 631

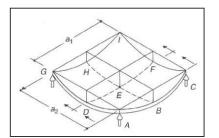
Two-Way Plates

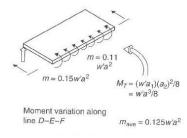
- support conditions
 - columns
 - flexible (beams)
 - simple
 - continuous

TWO-WAY SLAB (with dropped panels)

Plates & Grids 20 Lecture 7

Architectural Structures III ARCH 631

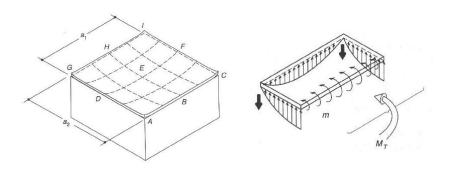

TWO-WAY SLAB (with beams)


FLAT PLATE

F2007abn

Two-Way Plates

- supported by columns
 - $-M_{max}$ at midspan of edges

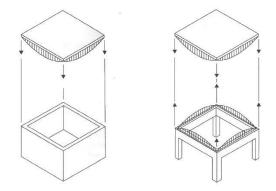

Plates & Grids 21 Lecture 7

Architectural Structures III ARCH 631

F2007abn

Two-Way Plates

- simply supported
 - maximum curvature at midpoint of plate


Plates & Grids 22 Lecture 7

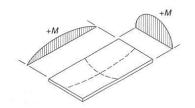
Architectural Structures III ARCH 631

F2007abn

Two-Way Plates

- beam vs. wall supports
 - stiffer supports, thinner slab

Plates & Grids 23 Lecture 7

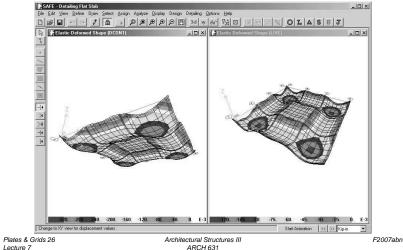

Architectural Structures III ARCH 631

Two-Way Plates

- bay proportions
 - shorter side has bigger $\frac{EI}{I}$

L

- ratio of longer side to shorter side > 1.5
 - acts like <u>one-way plate</u>

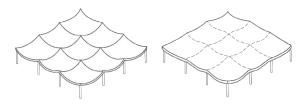

```
Plates & Grids 24
Lecture 7
```

Architectural Structures III ARCH 631

F2007abn

Two-Way Plates

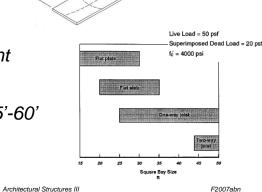
• other constraint conditions



Two-Way Plates

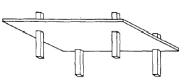
 moments found Side Bending Moments Ratio $M_a = C_a w a^2$ $M_{\rm b} = C_{\rm b} w b^2$ from tables or a/b C. Cb handbook Simply supported 1.0 +0.0479 +0.0479 on all four sides solutions 2.0 +0.0116+0.1017a - depend on Fixed edges on 1.0 +0.0231+0.0231support all four sides -0.0513-0.0513conditions 2.0 +0.0039 +0.0412-0.0143-0.0829Free corner 1.0 +0.027+0.027 (corner balcony) -0.050-0.050а b Plates & Grids 25 Architectural Structures III F2007abn Lecture 7 ARCH 631

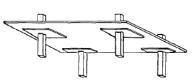
Design Considerations

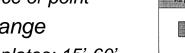

- minimize bending (& depth)
- support conditions effective
 - continuous edge support preferred
 - fixed more than simple
- continuous surface

Plates & Grids 27 Lecture 7 Architectural Structures III ARCH 631

Design Considerations (cont'd)


- overhangs reverse curvature
- bay proportions - < 1:1.5
- load type
 - surface or point
- span range - rigid plates: 15'-60'


Plates & Grids 28 Lecture 7


Reinforced Concrete Design

- flat plate
 - 5"-10" thick

- simple formwork
- lower story heights
- flat slab
 - same as plate
 - $-2\frac{1}{4}"-8"$ drop panels

ARCH 631

Reinforced Concrete Design

Architectural Structures III

ARCH 631

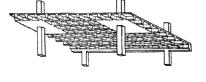
Reinforced Concrete Design

Square Bay Size

economical & common

resist lateral loads

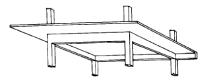
0.


0.

Cost Index n

Plates & Grids 29

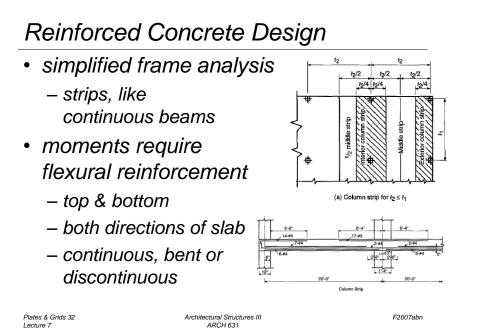
Lecture 7


- two-way joist
 - "waffle slab"
 - 3"-5" slab
 - 8"-24" stems
 - 6"-8" webs
- beam supported slab
 - 5"-10" slabs
 - taller story heights

vay joi:

Two-way jois (wide module

F2007abn


Plates & Grids 30 Lecture 7

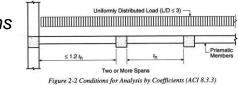
Architectural Structures III ARCH 631

F2007abn

Plates & Grids 31 Lecture 7

Architectural Structures III ARCH 631

Reinforced Concrete Design

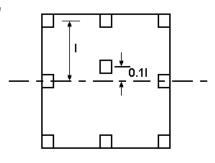


Plates & Grids 34 Lecture 7

Architectural Structures III ARCH 631 F2007abn

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - $-w_{\mu}$ from combos


- uniform loads with L/D \leq 3
- l_n is clear span (+M) or average of adjacent clear spans (-M)

Plates & Grids 33	
Lecture 7	

Architectural Structures III ARCH 631 F2007abn

Reinforced Concrete Design

- two-way slabs Direct Design Method
 - 3 or more spans each way
 - uniform loads with L/D \leq 3
 - rectangular panels with long/short span ≤ 2
 - successive spans
 can't differ > longer/3
 - column offset no more than 10% span

Plates & Grids 35 Lecture 7 Applied Architectural Structures ARCH 631

Reinforced Concrete Design

	<u>Г</u> Т	<u>_</u>			<u> </u>	
	End Span		Inter	ior Span	П	
	t o	3		4	6	
			End Spar	n	Interio	r Span
Span ratio	Slab Moments	1 Exterior Negative	2 Positive	3 First Interior Negative	4 Positive	5 Interio Negativ
શ્2/શ	Total Moment	0.16 Mo	0.57 Mo	0.70 Mo	0.35 Mo	0.65 M
0.5	Column Strip Beam Slab	0.12 M _o 0.02 M _o	0.43 Mo 0.08 Mo	0.54 M _o 0.09 M _o	0.27 M _o 0.05 M _o	0.50 M 0.09 M
	Middle Strip	0.02 M _o	0.06 M ₀	0.07 Mo	0.03 Mo	0.06 M
1.0	Column Strip Beam Slab	0.10 M _o 0.02 M _o	0.37 M ₀ 0.06 M ₀	0.45 M ₀ 0.08 M ₀	0.22 M₀ 0.04 M₀	0.42 M 0.07 M
	Middle Strip	0.04 M _o	0.14 Mo	0.17 Mo	0.09 M ₀	0.16 M
2.0	Column Strip Beam Slab	0.06 M _o 0.01 M _o	0.22 M _o 0.04 M _o	0.27 M _o 0.05 M _o	0.14 M _o 0.02 M _o	0.25 M 0.04 M
	Middle Strip	0.09 Mo	0.31 Mo	0.38 Mo	0.19 Mo	0.36 M

(2) Interpolate between values shown for different 1/2/11 ratios.

(3) All negative moments are at face of support.

(4) Concentrated loads applied directly to beams must be accounted for separately.

Plates & Grids 36 Lecture 7

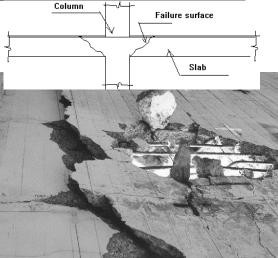
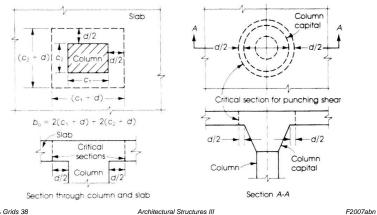

Architectural Structures III ARCH 631

Table 4-6 Two-Way Beam-Supported Slab

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

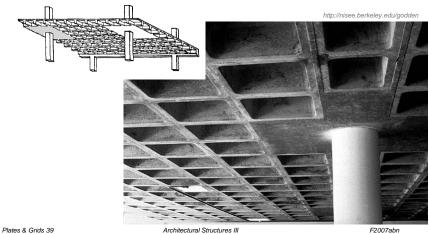
Plates & Grids 37 Lecture 7


F2007abn

Architectural Structures III ARCH 631

F2007abn

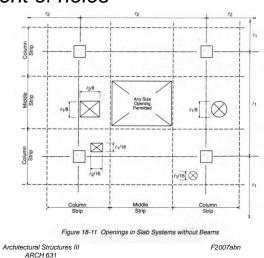
Shear in Concrete


- critical section at d/2 from
 - column face, column capital or drop panel

Plates & Grids 38 Architectural Structures III Lecture 7 ARCH 631

Shear in Concrete

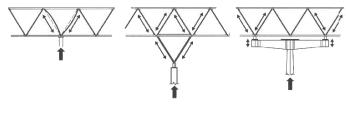
at columns with waffle slabs


ARCH 631

Lecture 7

F2007abn

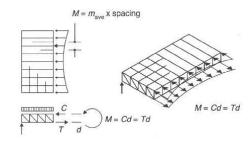
Openings in Slabs


- · careful placement of holes
- shear strength reduced
- bending & deflection can increase

Plates & Grids 40 Lecture 7

Space "Frame" Behavior

- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

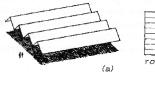

Plates & Grids 42 Lecture 7

Architectural Structures III ARCH 631

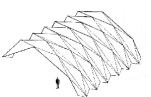
F2007abn

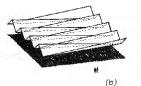
Space "Frame" Behavior

- · handle uniformly distributed loads well
- · bending moment
 - tension & compression
 "couple" with depth
 - member sizes can vary, but difficult

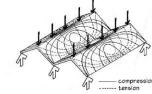


Plates & Grids 41	
Lecture 7	


Architectural Structures III ARCH 631 F2007abn


Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

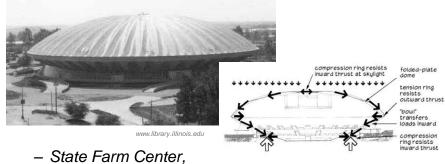


Architectural Structures III ARCH 631

Folded Plates

- common for roofs
- edges need stiffening

Plates & Grids 44 Lecture 7


Architectural Structures III ARCH 631

http://nisee.berkeley.edu/godden

F2007abn

Folded Plates

- State Farm Center, (Assembly Hall) University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Plates & Grids 45 Lecture 7

Architectural Structures III ARCH 631