Applied Architectural Structures:

STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631 **D**R. ANNE NICHOLS **F**ALL 2013

twenty eight

construction inspection & review

Supervision 1 Lecture 28

Applied Architectural Structures ARCH 631

F2009abn

by Mark Parisi mark.com

計算に有許

off the mark

I DON'T KNOW GUYS ... SOMETHING JUST DOESN'T

SEEM RIGHT ...

Supervision Practices - IBC

	VERIFICATION AND INSPECTION	CONTINUOUS	PERIODIC	REFERENCED STANDARD ^a	IBC REFERENCI
1.	Material verification of high-strength bolts, nuts and washers:				
	 Identification markings to conform to ASTM standards specified in the approved construction documents. 	_	x	Applicable ASTM material specifications; AISC 335, Section A3.4; AISC LRFD, Section A3.3	-
	b. Manufacturer's certificate of compliance required.	_	х	_	_
2.	Inspection of high-strength bolting:				
	a. Bearing-type connections.	_	х		1704.3.3
	b. Slip-critical connections.	x	х	AISC LRFD Section M2.5	
3.	Material verification of structural steel:				
	 a. Identification markings to conform to ASTM standards specified in the approved construction documents. 	_	_	ASTM A 6 orASTM A 568	1708.4
	b. Manufacturers' certified mill test reports.			ASTM A 6 or ASTM A 568	
4.	Material verification of weld filler materials:				
	 a. Identification markings to conform to AWS specification in the approved construction documents. 	_	_	AISC, ASD, Section A3.6; AISC LRFD, Section A3.5	,
	b. Manufacturer's certificate of compliance required.	_		_	

Lecture 28

Office Hours

Professor Anne Nichols (845-6540)

Lecture 28

ARCH 631

F2007abn

Supervision Practices - IBC

 Inspection of welding: a. Structural steel: 	_	_		
1) Complete and partial penetration groove welds.	х	_		
Multipass fillet welds.	х	_		
3) Single-pass fillet welds $> \frac{5}{16}''$	х	_	AWS D1.1	1704.3.1
 Single-pass fillet welds ≤ ⁵/₁₆" 	_	х		
5) Floor and deck welds.	_	х	AWS D1.3	_
b. Reinforcing steel:				
 Verification of weldability of reinforcing steel other than ASTM A 706. 	_	х		1903.5.2
 Reinforcing steel-resisting flexural and axial forces in intermediate and special moment frames, and boundary elements of special reinforced concrete shear walls and shear reinforcement. 	x	_	AWS D1.4 ACI 318: 3.5.2	
3) Shear reinforcement.	х	_		
Other reinforcing steel.	_	х		
 Inspection of steel frame joint details for compliance with approved construction documents: 		х		
a. Details such as bracing and stiffening.b. Member locations.c. Application of joint details at each connection.		_	—	1704.3.2

a. Where applicable, see also Section 1707.1, Special inspection for seismic resistance.

Supervision 4	Architectural Structures III	F2007abn
Lecture 28	ARCH 631	

Steel Construction

- proper grade material - high strength bolts
- quality welds
- proper bolted conditions (ex. sc)
- fabrication and erection of steel frame connection details


```
Supervision 5
Lecture 28
```

Architectural Structures III ARCH 631

Concrete Construction

- proper placement of all reinforcement
 - welding
 - splices
- mix design
 - slump
 - in-situ strength
 - cast cylinders
 - cylinder cores if needed

F2007abn

Supervision 7 Lecture 28

Architectural Structures III ARCH 631

F2007abn

Supervision Practices - IBC

	VERIFICATION AND INSPECTION	CONTINUOUS	PERIODIC	REFERENCED STANDARD ^a	IBC REFERENCE
Ι.	Inspection of reinforcing steel, including prestressing tendons, and placement.	_	х	ACI 318: 3.5, 7.1-7.7	1903.5, 1907.1, 1907.7, 1914.4
2	Inspection of reinforcing steel welding in accordance with Table 1704.3, Item 5B.	_	_	AWS D1.4 ACI 318: 3.5.2	1903.5.2
3.	Inspect bolts to be installed in concrete prior to and during placement of concrete where allowable loads have been increased.	x	_	_	1912.5
4	Verifying use of required design mix.	_	x	ACI 318: Ch. 4, 5.2-5.4	1904, 1905.2-1905.4 1914.2, 1914.3
5.	At the time fresh concrete is sampled to fabricate specimens for strength tests, perform slump and air content tests, and determine the temperature of the concrete.	x	_	ASTM C 172 ASTM C 31 ACI 318: 5.6, 5.8	1905.6, 1914.10
6.	Inspection of concrete and shotcrete placement for proper application techniques.	x	_	ACI 318: 5.9, 5.10	1905.9, 1905.10, 1914.6, 1914.7, 1914
7.	Inspection for maintenance of specified curing temperature and techniques.	·	х	ACI 318: 5.11-5.13	1905.11, 1905.13, 1914.9
8	Inspection of prestressed concrete: a. Application of prestressing forces. b. Grouting of bonded prestressing tendons in the seismic-force-resisting system.	x x	_	ACI 318: 18.20 ACI 318: 18.18.4	_
9	Erection of precast concrete members.	-	х	ACI 318: Ch. 16	_
9	8 Verification of in-situ concrete strength, prior to stressing of tendons in posttensioned concrete and prior to removal of shores and forms from beams and structural slabs.	_	x	ACI 318: 6.2	1906.2

L Where applicable, see also Section 1707.1, Special inspection for seismic resistance

```
Supervision 6
```

Lecture 28

Architectural Structures III ARCH 631

F2007abn

		FREQUENCY OF INSPECTION		REFERENCE FOR CRITERIA		
I	INSPECTION TASK	Continuous during task listed	Periodically during task listed	IBC section	ACI 530/ ASCE 5/ TMS 402 ⁸	ACI 530.1/ ASCE 6/ TMS 602 ⁸
_	 From the beginning of masonry construction, the following shall be verified to ensure compliance: 					
	 Proportions of site-prepared mortar, grout and prestressing grout for bonded tendons. 	-	x	-	-	Art. 2.6A
_	b. Placement of masonry units and construction of mortar joints.	-	x	_	_	Art. 3.3B
	 Placement of reinforcement, connectors and prostressing tendons and aneborages. 	-	x	-	Sec. 1.12	Art. 3.4, 3.6A
	d. Grout space prior to grouting.	x	_	_	_	Art. 3.2D
	e. Placement of grout.	x	_	-	_	Art. 3.5
1	f. Placement of prestressing grout.	x	_	_	-	Art. 3.6C
	2. The inspection program shall verify:					
_	a. Size and location of structural elements.	_	х	_	_	Art. 3.3G
	b. Type, size and location of anchors, including other details of anchorage of masonry to structural members, frames or other construction.	x	_	_	Sec. 1.2.2(e), 2.1.4, 3.1.6	_
-	c. Specified size, grade and type of reinforcement.		х	_	Sec. 1.12	Art. 2.4, 3.4
	d. Welding of reinforcment.	х	-	_	Sec. 2.1.10.6.2, 3.2.3.4(b)	
	e. Protection of masonry during cold weather (temperature below 40°F) or hot weather (temperature above 90°F).	-	x	Sec. 2104.3, 2104.4	-	Art. 1.8C, 1.8D
_	f. Application and measurement of prestressing force.	х	_	_	-	Art. 3.6B
	Preparation of any required grout specimens, mortar specimens and/or prisms shall be observed.	х	_	Sec. 2105.2.2, 2105.3	-	Art. 1.4
	 Compliance with required inspection provisions of the construction documents and the approved submittals shall be verified. 	_	x	-	_	Art. 1.5

ARCH 631

a. The specific standards referenced are those listed in Chapter 35

Supervision 8 Lecture 28

Architectural Structures III

2

F2007abn

Construction Supervision

- proper placement of all reinforcement
- prism construction
 - masonry
 - mortar
- hot/cold weather
 protection
- · clear cavity

Supervision 9 Lecture 28 F2007abn

Fire and Life Safety

• for the Design Professional

– by Carl Wren, P.E.

Chief Engineer, Austin Fire Department

Architectural Structures II

ARCH 631

- Nuclear/Radiation Safety Engineering, ~29 years in Fire Protection – Former Commissioner, Texas Commission on Fire Protection, Former Member of Texas Task Force 1 - Firefighter, EMT, & Fire Inspector
- guest lecture excerpts 2004 & 2008

Wood Construction

- structural members
 - avoid damage
 - must be protected from exposure to weather and water
- · connections & bracing

Supervision 10 Lecture 28

Architectural Structures III ARCH 631

F2007abr

Fire and Life Safety

- consequences, ex. 2005
 - 3,675 deaths
 - 17,925 injuries
 - \$10,672,000,000 in property loss
- behavior & dynamics
 - a rapid (exponential growth), self sustaining oxidation process accompanied by the evolution of heat and light of varying intensities

F2008abn

Supervision 12

. Lecture 28

- · human viability impacts
 - heat, smoke, oxygen deprivation
 - CO produced by combustion
- · controlling factors of fire
 - available fuel supply
 - furniture, structure, other contents
 - available oxidizer
 - · ventilated or unventilated, chemical oxidizers
 - impact of design, construction, occupancy

Supervision	13
Lecture 28	

Architectural Structures III ARCH 631

F2008abr

Fire and Life Safety

- development heat transfer
 - conduction, convection, radiation
 - exponential
 - quickly exceed 500°C (932⁷) even > 650°C (1200°F) at the ceiling of a confined fire within 4 to 5 minutes
 - post flashover (uncontrolled ventilation) ~600°F to >1800°F within a matter of seconds

Supervision 14

Architectural Structures III ARCH 631 F2008abn

Fire and Life Safety

- fire resistive construction (I-FR, IA)
 - · concrete and protected steel
 - may or may not be compartmented
 - typical construction for high-rises

typical hazards

- · fires are generally content fires
- not a severe "collapse" hazard
- spalling of concrete
- central HVAC as a smoke travel path (also floor/ceiling penetrations and voids)
- · hazards may be most obvious on floor above fire floor
- · seek assistance in evaluating severe structural damage

Fire and Life Safety

- high rise fires
 - 1911 Triangle Shirtwaist Company NY, NY
 - 1980 MGM Grand Hotel Las Vegas, NV
 - 1986 Dupont Plaza
 San Juan, Puerto Rico
 - 1988 1st Interstate Bank Los Angeles, CA
 - 1991 One Meridian Plaza
 Philadelphia, PA

Supervision 16 Lecture 28 Architectural Structures III ARCH 631

- non-combustible or limited combustible construction (II-H, II-A)
 - *metal, masonry, or concrete wall construction with metal roof*
- typical hazards
 - unprotected lightweight steel roof joist & W's
 - · roofs typically flat with combustible weather covering
 - ignition of built-up roofing may be above ceilings ABOVE fire sprinklers
 - concentrated roof loading by HVAC units, etc.
 - steel expands and loses 40% capacity after ~10 min at 593°C (1100°F)

```
Supervision 17
Lecture 28
```

Architectural Structures III ARCH 631

Fire and Life Safety

- heavy timber construction
 - wood frame or large cross section (8 in. min vertical members and 6 in. min horizontal members)
- typical hazards
 - high fuel load exclusive of contents
 - masonry wall collapse (similar to ordinary construction)
 - may survive long exposure, but control in advanced stages may be very difficult
 - radiant heat exposures may be extreme

F2008abn

F2008abr

Fire and Life Safety

- ordinary construction (III)
 - · freestanding masonry or brick walls
 - solid wood joist flooring and roofing (typical within older buildings)
 - wood truss assemblies (typical in newer buildings)
- typical hazards
 - combustible concealed spaces
 - peaked roof concealed spaces
 - · lack of or damaged draft or fire stopping
 - decorative parapet walls
 - "fire cut" beams

```
Supervision 18
Lecture 28
```

Architectural Structures III ARCH 631 F2008abn

Fire and Life Safety

- wood frame construction
 - light weight wood members typically consisting of wood 2 x's
- typical hazards
 - entire frame is part of fuel package
 - small dimension timber can be compromised more quickly than heavy timber
 - Braced Frame (mortised connections), Platform (sectional framing & multi-story), and Balloon Framing (fire & smoke travel paths)
 - failure of wood frame bearing walls may trigger simultaneous collapse of floors and/or roof

Supervision 20 Lecture 28

Fire and Life Safety (from DHS training program)

• type V wood frame truss construction

Figure 4— Metal tooth plate connectors like those shown are used extensively in lightweight parallel and pitch chord trusses. The multi-tooth plates are embedded into the wood fiber using high pressure.

Supervision 21 Lecture 28 Architectural Structures III ARCH 631

Fire and Life Safety

- what can I do?
 - utilize wood carefully, install attic draft stops, early and correctly

Supervision 23 Lecture 28 Architectural Structures III ARCH 631 F2008abn

F2008abr

Fire and Life Safety

- what can I do?
 - break up the fuel continuity during construction and in the completed project:
 - fire barriers
 - open spaces
 - fire resistive and noncombustible construction
 - even the use of simple gypsum wallboard partitions and closed doors can help

Supervision 22
Lecture 28

Architectural Structures III ARCH 631 F2008abr

Fire and Life Safety

- what can I do?
 - utilize fire detection and suppression systems wisely

Supervision 24 Lecture 28 Architectural Structures III ARCH 631

- what can I do?
 - consider your occupants and realistic opportunities for people to escape

Supervision 25 Lecture 28

Architectural Structures III ARCH 631

Fire and Life Safety

- what can I do?
 - consider the abilities and resources of firefighting and rescue personnel near your projects
 - be realistic
 - how they can reach the scene of the emergency

Fire and Life Safety

- what can I do?
 - push for the durability of fire resistive coatings to be re-evaluated and improved

Supervision 26 Lecture 28

Architectural Structures III ARCH 631 F2008abr

Fire and Life Safety

- what can I do?
 - use the rule of thumb of the emergency services - risk vs. benefit
 - risk (invest) a lot for a life (maybe even another life)
 - risk little for little gain
 - but again be realistic
 - we cannot and will not eliminate all risk

Supervision 27 Lecture 28 Architectural Structures III ARCH 631 F2008abn

F2008abr

Supervision 28 Lecture 28

- · know the applicable codes
- understand the code and standards development processes
 - International Code Council (a consortium of ICBO, BOCA and SBCCI)
 - meant to create a single consistent series of codes for the USA (world?)
 - National Fire Protection Association (NFPA)

Supervision 2	9
Lecture 28	

Architectural Structures	111
ARCH 631	

Fire and Life Safety

- NFPA 101, Life Safety Code (LSC 101)
- NFPA 1, Fire Prevention Code (New UFC)
- NFPA 70, National Electrical Code
- NFPA 5000, Building Code (vs. IBC)

Supervision 31 Lecture 28

Architectural Structures III ARCH 631

F2008abn

F2008abn

Fire and Life Safety

- International Code Series e.g.
 - International Building Code (IBC)
 - International Fire Code (IFC)


```
Supervision 30
Lecture 28
```

Supervision 32

. Lecture 28 Architectural Structures III ARCH 631 F2008abr

Fire and Life Safety

- many other standards and codes
 - NFPA 14, Standpipes (Hose Systems)
 - NFPA 13, Fire Sprinkler Standard

- NFPA 70, National Electrical Code (NEC)

Supervision 33 Lecture 28 Architectural Structures III ARCH 631

F2008abn

Fire and Life Safety

- ANSI A-17.1 & A-17.3 Elevators

Supervision 35 Lecture 28 Architectural Structures III ARCH 631 F2008abn

Fire and Life Safety

- NFPA 72, Fire Detection and Alarm

Fire and Life Safety

- performance based codes
 - NFPA 101, chapter 5
 - 2003 ICC Performance for Buildings and Facilities
 - NFPA 5000, chapter 5

Supervision 36 Lecture 28

Architectural Structures III ARCH 631

• references

- National Institute of Standards and Technology (NIST), Building and Fire Research Laboratory, "Fire on the Web, Fire Scenarios", http://fire.nist.gov/fire/fires.html
- 2. "The Triangle Shirtwaist Fire", by Paul Rosa, History Buff.com, http://www.historybuff.com/library/refshirtwaist.html
- Fire in the United States 1992–2001, Thirteenth Edition, October, 2004, U.S. Fire Administration, Federal Emergency Management Agency, Emmitsburg, Maryland 21727
- 4. FIRE LOSS IN THE UNITED STATES DURING 2002, by Michael J. Karter, Jr., National Fire Protection Association, Fire Analysis & Research Division, Quincy, MA, September 2003
- FIRE LOSS IN THE UNITED STATES DURING 2003, by Michael J. Karter Jr., National Fire Protection Association, Fire Analysis & Research Division, Quincy, MA, October 2004
- 6. FIRE LOSS IN THE UNITED STATES DURING 2004, by Michael J. Karter Jr., National Fire Protection Association, Fire Analysis & Research Division, Quincy, MA, June 2005
- 7. FIRE LOSS IN THE UNITED STATES DURING 2005, by Michael J. Karter Jr., National Fire Protection Association, Fire Analysis & Research Division, Quincy, MA, July 2006
- 8. "Investigation Report on the DuPont Plaza Hotel Fire", National Fire Protection Association, Quincy, MA, 1987
- "Investigation Report on the First Interstate Bank Building Fire", National Fire Protection Association, Quincy, MA, 1988
- 10. "Fire Investigation Report on the One Meridian Plaza Fire", National Fire Protection Association, Quincy, MA, 1991

Supervision 37 Lecture 28 Architectural Structures III ARCH 631 F2008abn

Structural "History"

· by building system and relevance


```
Supervision 11
Lecture 28
```

Architectural Structures III ARCH 631 F2007abn

Structural "History"

• by building system and relevance

by building system and relevance

Supervision 13 Lecture 28

Architectural Structures III ARCH 631

F2007abn

Supervision 12 Lecture 28

F2007abn

Structural "History"

• by building system and relevance

Supervision 14 Lecture 28

Architectural Structures III ARCH 631

F2007abn

Final Exam Material

- my list:
 - systems focus
 - general behavior, resistance to lateral loading (shear walls, etc.)
 - hazard considerations
 - · behavior of elements
 - beams & columns (statics)
 - continuous beams, cables, arches, rigid frames, plates, grids, membranes, shells, nets

Supervision 15 Lecture 28 Architectural Structures III ARCH 631 F2007abn

Final Exam Material

- my list (cont'd):
 - code and design requirements
 - methodologies by materials
 - construction supervision
 - system selection
 - wood, steel, concrete, masonry
 - component types
 - connections
 - foundations