Applied Architectural Structures:

STRUCTURAL ANALYSIS AND SYSTEMS

ARCH 631 DR. ANNE NICHOLS **F**ALL 2013

lecture twenty four

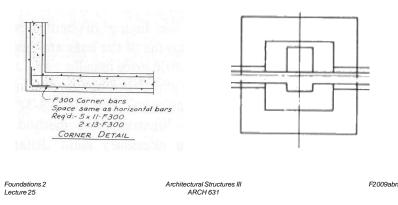
foundations and retaining walls

Foundations Lecture 25

Applied Architectural Structures ARCH 631

Structural vs. Foundation Design

- structural design
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.


Bright Football Complex

www.tamu.edu

F2009abr

Foundation

• the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design

- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same 2-story building no design the same

Foundations 4 Lecture 25

Architectural Structures III ARCH 631

F2009abn

F2009abr

Design Assumptions

- validity dependant on:
 - quality of site investigation
 - construction monitoring
 - your experience
 - flexibility of the design

Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement

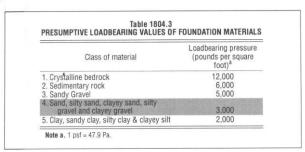
Foundations 6

Lecture 25

· rock fracture behavior

Foundations 5 Lecture 25

Architectural Structures III ARCH 631


Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - · deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a = \frac{q_u}{S.F.}$

F2009abn

Soil Properties & Mechanics

• strength, q_a

Architectural Structures III

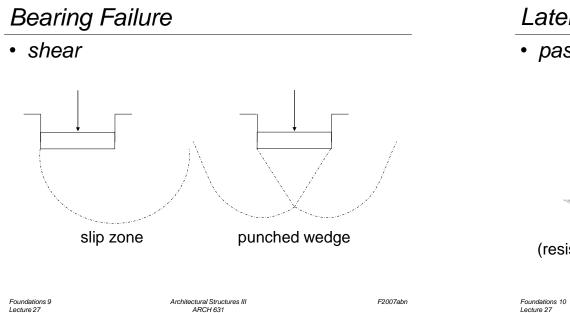

ARCH 631

FIGURE 2.5

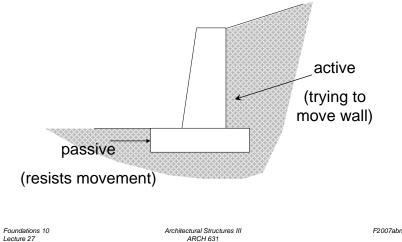
Presumptive surface bearing values of various soils, as given in the BOCA National Building Code/1996. (*Reproduced by permission*)

Foundations 7 Lecture 27 Architectural Structures III ARCH 631 F2007abn

Foundations 8 Lecture 25 Architectural Structures III ARCH 631 F2009abn

Settlements - Considerations

- How do we estimate the amount for a given design?
- What are the tolerable movements?
- If our estimate is greater than the tolerable movement, what do we do?



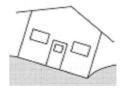
www.calculusfoundations.com

Foundations 11 Lecture 25 Architectural Structures III ARCH 631 F2009abn

Lateral Earth Pressure

• passive vs. active

Settlements - Components


- vertical
 - immediate (sands)
 - consolidation (clays)
 - secondary (organic soils/peats)
- tilting
 - eccentric loads
 - non-uniform stress distribution

Architectural Structures III

ARCH 631

• distortion - $\frac{\Delta}{L}$

Foundations 12 Lecture 27

F2007abn

Excessive Settlement

- we can try
 - deeper foundation
 - alter structure
 - concrete/soil mat foundation
 - reduce the load
 - move the structure
 - modify the foundation type
 - modify the soil

Foundations 13 Lecture 25 Architectural Structures III ARCH 631

Construction

- unique to type of footing
 - excavation
 - sheeting and bracing
 - water control (drainage/stabilization)
 - fill: placement & compaction
 - pile driver or hammer
 - caisson
 - underpinning (existing foundation)

F2009abr

Foundation Materials

- · concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

Foundations 14 Lecture 25 Architectural Structures III ARCH 631 F2009ab

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements

Architectural Structures III

ARCH 631

- · consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Foundations 16

ecture 25

F2009abn

Foundations 15 Lecture 25

Generalized Design Steps

- · calculate loads
- characterize soil
- · determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check
 stability
- estimate settlements
- design footing structure * (factored loads)

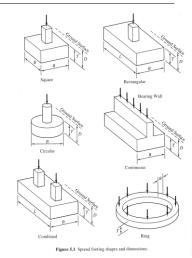
```
Foundations 17
Lecture 27
```

Architectural Structures III ARCH 631

Types of Foundations

Column

Pile Cap

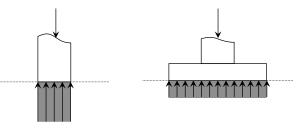

Piles or Other

Type of Deep Foundations

- mat foundations
- · retaining walls
- · basement walls
- pile foundations
- drilled piers

Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings




```
Foundations 18
Lecture 27
```

Architectural Structures III ARCH 631 F2007abr

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

Foundations 19 Lecture 27 F2007abn

F2007abn

Foundations 20 Lecture 25

5

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

 linear stress distribution assumed

Foundations 21	
Lecture 27	

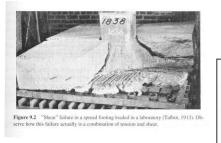
Architectural Structures III ARCH 631

F2007abn

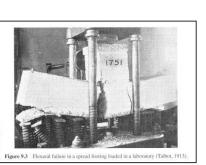
Concrete Spread Footings

- plain or reinforced
- ACI specifications
- P_u = combination of factored D, L, W
- ultimate strength

$$-V_u \leq \phi V_c$$
: $\phi = 0.75$ for shear

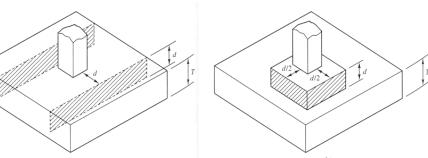

- plain concrete has shear strength
- $-M_u \le \phi M_n$: $\phi = 0.9$ for flexure

Foundations 22	
Lecture 27	


Architectural Structures III ARCH 631 F2007abn

Concrete Spread Footings

• failure modes


shear

bending

Concrete Spread Footings

• shear failure

one way shear

two way shear

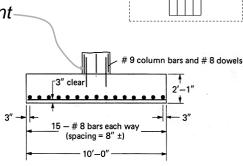
Foundations 24 Lecture 25 Architectural Structures III ARCH 631 F2009abn

Foundations 23 Lecture 27

6

Over and Under-reinforcement

- reinforcement ratio for bending
 - $-\rho = \frac{A_s}{hd}$
 - use as a design estimate to find A_s , b, d
 - $-\max\rho=0.75\rho_b$
 - minimum for slabs & footings of uniform thickness $\frac{A_s}{bh} = 0.002$ grade 40/50 bars = 0.0018 grade 60 bars

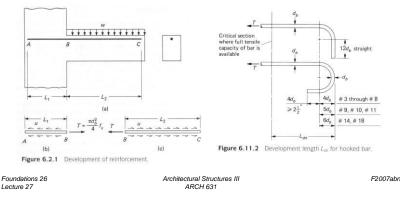

Foundations 25 Lecture 27

```
Architectural Structures III
ARCH 631
```

Column Connection

- bearing of column on footing $-P_{\mu} \le \phi P_{\mu} = \phi (0.85 f'_{c}A_{1})$
 - $\phi = 0.65$ for bearing
- dowel reinforcement
 - if P_u > P_b, need
 compression
 reinforcement
 min of 4 #5 bars

(or 15 metric)



Architectural Structures III ARCH 631

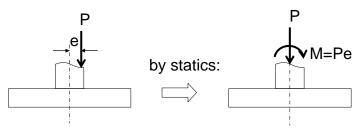
F2007abn

Reinforcement Length

- need length, ℓ_d
 - bond
 - development of yield strength

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads


Foundations 28 Lecture 25

Wall Footings - plain vs. reinforced

- trade off in amounts of material
 - can save time if cost of extra concrete is justified (plain)
 - local codes may not allow plain footings
 - with same load, plain about twice as thick as minimally reinforced footing

Eccentrically Loaded Footings

• footings subject to moments

 soil pressure resultant force <u>may not</u> <u>coincide</u> with the centroid of the footing

Architectural Structures III	F2007abn	Foundations 30	Architectural Structures III	F2007abn
ARCH 631		Lecture 27	ARCH 631	

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing
- for rigid footing,
 simplification of soil
 pressure is a linear
 distribution based on
 constant ratio of pressure to settlement

Guidelines

- want resultant of load from pressure inside the middle third of base
 - · ensures stability with respect to overturning

$$SF = \frac{M_{resist}}{M_{overturning}} = \frac{R \cdot x}{M} \ge 1.5$$

- pressure under toe (moment) $\leq q_a$
- shortcut using uniform soil pressure for design moments gives similar steel areas

Foundations 31 Lecture 25

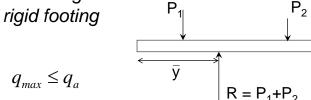
Foundations 29 Lecture 27

Foundations 32

Lecture 27

Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line


- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Foundations 33
Lecture 27

Architectural Structures III ARCH 631

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- resultant coincides with centroid of footing area for uniformly distributed pressure assuming

Architectural Structures III ARCH 631


ctures III

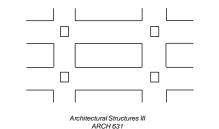
F2007abn

F2007abn

Combined Footing Types

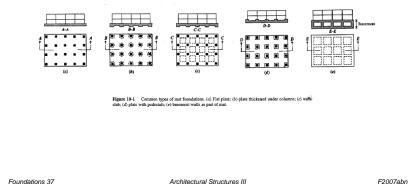
- rectangular
- trapezoid

- strap or cantilever
 - prevents overturning of exterior column



- raft/mat
 - more than two columns over an extended area

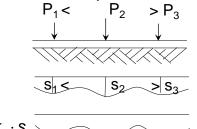
Foundations 34 Lecture 27 Architectural Structures III ARCH 631 F2007abn


Multiple Column Footings

- used where bearing capacity of subsoil is so low that large bearing areas are needed
- grid foundation
 - continuous strips between columns
 - treat like rectangular combined footings with moment for beam

Multiple Column Footings

- when bearing capacity is even lower, strips in grid foundation merge into mat
 - upside down flat slab or plate



ARCH 631

Mat Foundations

Lecture 27

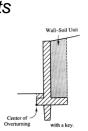
- rigid foundations
 - soil pressures presumed linear
- flexible foundation
 - settlements and pressures no longer linear

F2007abn

k_s is a mechanical soil property Foundations 39 Lecture 27 Architectural Structures III ARCH 631

II.

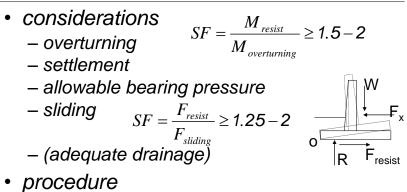
Settling of Multiple Column Footings


- use if we can't space columns such that the centroid of foundation coincides with load resultant
- geometry helps reduce differential settlement
 - variable soil
 - structure sensitive to differential settlements

Foundations 38 Lecture 27 Architectural Structures III ARCH 631 F2007abr

Retaining Walls

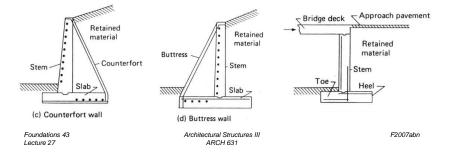
- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress


• key

Architectural Structures III ARCH 631 F2009abn

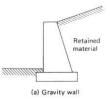
Foundations 40 Lecture 25

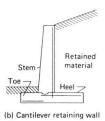
Retaining Walls


- proportion and check stability with working loads
- design structure with factored loads

Retaining Wall Types

• counterfort wall


buttress wall


- very tall walls (> 20 25 ft)
- bridge abutment
- basement frame wall (large basement areas)

Retaining Wall Types

- "gravity" wall
 - usually unreinforced
 - economical & simple
- cantilever retaining wall
 common

Foundations 42 Lecture 27 Architectural Structures III ARCH 631 F2007abn

Deep Foundations

- usage
 - when spread footings, mats won't work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations

Foundations 44 Lecture 25

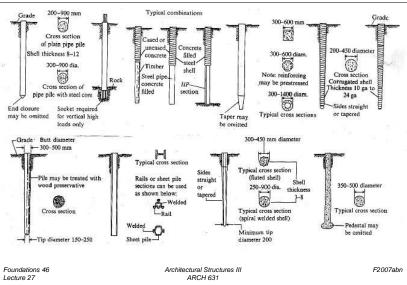
Deep Foundation Types

- piles usually driven, 6"-8" φ, 5' +
- piers
- caissons
- drilled shafts
- drilled, excavated, concreted (with or without steel)
- bored piles

- 2.5' 10'/12' **ø**
- pressure injected piles

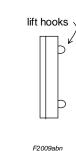
Foundations 45 Lecture 25

Architectural Structures III ARCH 631


F2009abr

Deep Foundations

- classification
 - by material
 - by shape
 - by function (structural, compaction...)
- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

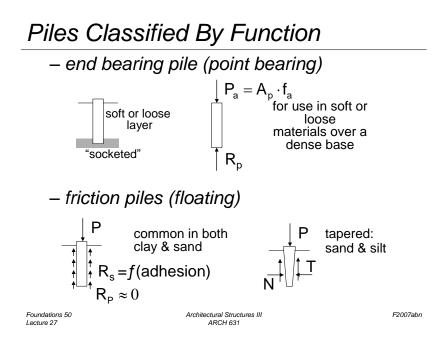

Foundations 47 Lecture 25 Architectural Structures III ARCH 631 F2009abn

Deep Foundation Types

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)
- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

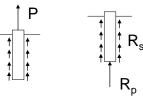
Foundations 48 Lecture 25 Architectural Structures III ARCH 631


Piles Classified By Material

- steel
 - rolled HP shapes or pipes

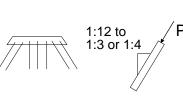
F2009abn

- pipes may be filled with concrete
- HP displaces little soil and may either break small boulders or displace them to the side



Foundations 49 Lecture 25 Architectural Structures III ARCH 631

Piles Classified By Function


- combination friction and end bearing

- uplift/tension piles structures that float, towers

- batter piles

angled, cost more, resist large horizontal loads

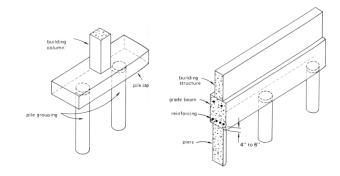
horiz

Foundations 51 Lecture 27 F2007abn

Piles Classified By Function

- fender piles, dolphins, pile clusters

large # of piles in a small area



- compaction piles
 - · used to densify loose sands
- drilled piers
 - · eliminate need for pile caps
 - designed for bearing capacity (not slender)

Foundations 52 Lecture 25 Architectural Structures III ARCH 631

Pile Caps and Grade Beams

- like multiple column footing
- more shear areas to consider

Architectural Structures III ARCH 631