APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS

ARCH 631 **D**R. ANNE NICHOLS **F**ALL 2013

lecture twenty thr

masonry construction

Bright Football Complex www.tamu.edu

Masonry Construction 1 Lecture 23

Applied Architectural Structures ARCH 631

ARCH 631

F2012abn

Masonry

- columns
- beams
- arches
- walls
- footings

www.archiplanet.org

Masonry Construction 2 Lecture 24

http://www.bluffton.edu

Learning Evaluation

Masonry Construction 2 Lecture 23

Architectural Structures III ARCH 631

F2010abn

Masonry Construction

- solid, grouted, hollow
- unreinforced
- reinforced
- prestressing

Masonry Construction 3 Lecture 26

Architectural Structures III ARCH 631

F2007abn

Masonry Materials

brick

concrete masonry units

Masonry Construction 4 Lecture 26

Architectural Structures III ARCH 631

F2007abn

Masonry Materials

- reinforcement
 - deformed bars
 - prestressing strand
 - development length
 - anchorage
 - splices
 - ties
- steel or composite

Masonry Construction 6 Lecture 26

Architectu ARCH 631

Masonry Materials

- mortar
 - water. masonry cement, sand, lime
 - types:
 - M higher strength - 2500 psi (ave.)
 - S N W medium high strength – 1800 psi
 - medium strength 750 psi
 - Ö K medium low strength – 350 psi
 - low strength 75 psi

Masonry Construction 5 Lecture 26

Architectural Structures III ARCH 631

Masonry Materials

- grout
 - high slump concrete
 - fills voids and fixes rebar
- prisms

ARCH 631

F2007abr

2

Masonry Materials

- fire resistance
 - fire-resistive structural material
 - details important to prevent leaks or cracks
 - retains strength if exposure not too long
 - mortar and cmu's dehydrate
 - loses 30-60% after that
 - no toxic fumes
 - cover necessary to protect steel

F2007abn

Masonry Materials

- moisture resistance
 - weathering index for brick
 - bond and detailing
 - expansion or shrinking from water
 - provide control joints
 - parapets, corners, long walls


```
Masonry Construction 9
Lecture 26
```

Architectural Structures III ARCH 631 F2007abr

Masonry Walls

Masonry Construction 8

Lecture 26

 based on empirical requirements for minimum wall thickness and height

Architectural Structures III

ARCH 631

- *h/t* < 25 (UBC 2105.2 *h/t*<35)
- wall thicknesses often increased by 4"/story
- bearing walls > 3-5 stories uneconomical, steel or concrete frames used
- strength design limit states:
 - serviceability: deflection
 - ultimate: compression & tension

Masonry Walls

F2007abn

Masonry Walls

• equivalent eccentricity with lateral load

Masonry Beam & Wall Design

• MSJC (ACI, ASCE, TMS)

- limit tensile stress in mortar
- working stress design (ASD)
 - Inear stresses in masonry
 - no tension in masonry when reinforced
 - elastic stress in steel < f_v
 - additional compression in walls
- masonry strength = f'_m

Masonry Construction 14 Lecture 26 Architectural Structures III ARCH 631

IASONRY

Masonry Walls

Masonry Beam & Wall Design

 reinforcement increases capacity & ductility

Masonry Construction 15 Lecture 26 Architectural Structures III ARCH 631

F2007abn

Δ

Masonry Design

• f_s is <u>not</u> the yield stress

Allowable Masonry Stresses

- flexure
 - $-F_b = 1/3 f'_m$ (unreinforced)
 - $-F_b = 0.45 f'_m$ (reinforced)
- shear, unreinforced masonry

$$-F_{v} = 1.5\sqrt{f'_{m}} \le 120 \text{ psi}$$

• shear, reinforced masonry

$$-M/Vd \le 0.25$$
: $F_v = 3.0\sqrt{f'_m}$
 $-M/Vd \ge 1.0$: $F_v = 2.0\sqrt{f'_m}$

Allowable Masonry Stresses

• tension - <u>unreinforced</u> only

Direction of G enueal tensils		Mortar types			
stress and masonry type	Portland cement/lime or mortar cement		Masonry cement or air entraine portland cement/lime		
	M or S	N	M or S	N	
Normal to bed joints					
Solid units	53 (366)	40 (276)	32 (221)	20 (138)	
Hollow units1					
Ungrouted	33 (228)	25 (172)	20 (138)	12 (83)	
Fully grouted	86 (593)	84 (579)	81 (559)	77 (531)	
Parallel to bed joints in running bond					
Solid units	106 (731)	80 (552)	64 (441)	40 (276)	
Hollow units					
Ungrouted and partially grouted	66 (455)	50 (345)	40 (276)	25 (172)	
Fully grouted	106 (731)	80 (552)	64 (441)	40 (276)	
Parallel to bed joints in masonry not laid in running bond					
Continuous grout section parallel to bed joints	133 (917)	133 (917)	133 (917)	133 (917)	
Other	0 (0)	0 (0)	0 (0)	0 (0)	

Table 2.2.3.2 — Allowable flexural tensile stresses for clay and concrete masonry, psi (kPa)

Masonry Construction 18 Lecture 23 Applied Architectural Structures ARCH 631 F2012abn

Allowable Reinforcement Stress

tension

a) Grade 40 or 50	F _s = 20 ksi
b) Grade 60	F _s = 24 ksi

c) Wire joint $F_s = 30 \text{ ksi}$

 *no allowed increase by 1/3 for combinations with wind & earthquake
 – did before 2011 MSJC

Masonry Construction 19 Lecture 23 Masonry Construction 19 Lecture 24

5

Reinforcement, M_s

if $f_s = F_s$ (allowable) the moment capacity is limited by the steel MSJC: $F_s = 20$ ksi, 24 ksi or 30 ksi by type

Masonry Construction 20 Lecture 26 Architectural Structures III ARCH 631

F2007abn

F2007abn

JOINT

Reinforcement, M_m

if $f_s=F_s$ (allowable) the moment capacity is limited by the steel

MSJC F_b=0.33f'_m

Masonry Construction 20 Lecture 26 Architectural Structures III ARCH 631 F2007abn

Strategy for RM Flexural Design to size section and find reinforcement – find ρ_b knowing f'_m and f_v - size section for some $\rho < \rho_h$ • get k, j • $bd^2 = \frac{M}{\rho j F_s}$ • get b & d in nice units needs to be sized for shear also - size reinforcement (bar size & #): $A_s = \frac{M}{R_s}$ $F_{,jd}$ - check design: $M_s = A_s F_s jd > M$ $f_b = \frac{M}{0.5bd^2 ik} < F_b$ Masonry Construction 22 F2007abn Architectural Structures III ARCH 631 Lecture 26

Ultimate Strength Design

- LRFD
- like reinforced concrete

- ex. earthquake loads

- useful when beam shear is high
- improved inelastic model


```
Masonry Construction 23
Lecture 24
```

Architectural Structures III ARCH 631

Masonry Walls

 axial force-moment interaction diagram

F2007abn

F2009abn

Masonry Walls

- one-way or two-way bending
- usually use hollow units (< 75% solid)
- reinforcement grouted
 - into cells if hollow units
 - between wythes if solid
- reinforcement usually at center
- reinforcement in compression ineffective
- avoid stirrups
- desirable in seismic zones

Masonry Construction 2	3
Lecture 26	

Architectural Structures III ARCH 631 F2007abr

Masonry Shear Walls

- bearing, bending, and shear
 - compression increases resistance

$$f_v = \frac{VQ}{I_n b}$$
 or $\frac{V}{A_{nv}} \le F_v$

unreinforced

reinforced

– unreinforced stress limit 1.5
$$\sqrt{f_m'}$$
 ≤ 120 psi

Masonry Construction 28 Lecture 23 F2012abn

Masonry Shear Walls

- (and beams)
 - reinforcement strength included:

- stress limit depends on ratio of bending moment to overturning moment: M/Vd

– spacing	limits
Masonry Construction 29	Applied Architectural Structures
Lecture 23	ARCH 631

Masonry Columns and Pilasters

must be reinforced

Masonry Construction 26
Lecture 26

Architectural Structures II ARCH 631

F2007abr

F2012abn

Masonry Shear Walls

- model as deep cantilever beam
 - flexure reinforcement

Masonry Construction 26 Lecture 26

Architectural Structures III ARCH 631

F2007abn

Masonry Columns and Pilasters

- considered a column when b/t < 3 and h/t > 4
- slender is
 - 8" one side
 - $-h/t \le 25$
- needs ties
- eccentricity

Lecture 26

- 10% of side dimension required
- interaction diagrams like r/c

Masonry Construction 27

Masonry Pilasters, Arches

- column in wall
 - increase bearing

Masonry Construction 31 Lecture 24

Architectural Structures III ARCH 631

F2009abn

Construction Supervision

- proper placement of all reinforcement
- prism construction
 - masonry
 - mortar
- hot/cold weather protection

F2007abr

Masonry Construction 30 Lecture 26

Architectural Structures III

ARCH 631