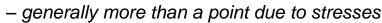
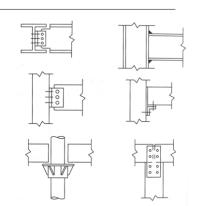
APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS

DR. ANNE NICHOLS **F**ALL 2013

lecture seventeen

connections

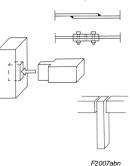

Lecture 17


Applied Architectural Structures ARCH 631

F2012abn

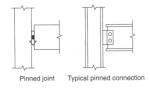
Connectors

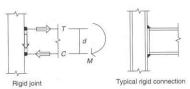
- "third-elements"
 - bolts
 - nails
 - welds
 - splice plates
- transfer load at a point, line or surface



Connection Design Considerations

- joints often critical in design
 - can influence choice of structural system
- types used influenced by:
 - member behavior
 - member geometry
- basic types join by:
 - lapping
 - deforming and interlocking
 - butting


Connections 2 Lecture 17


Architectural Structures III ARCH 631

Connector Rigidity

- pinned joints
 - point type
- rigid joints
 - line and surface types
 - multiple "points" separated by distance resist moment

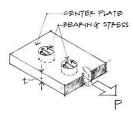
M = Td = CdT = C

Connections 3 Lecture 17

Architectural Structures III ARCH 631

F2007abn

Connections 4 Lecture 17


Architectural Structures III ARCH 631

Point Connectors

connected members in tension cause shear stress

connected members in compression cause bearing stress

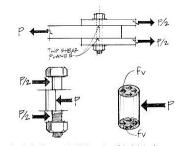
Bearing stress on plate.

Connections 5 Lecture 17

Architectural Structures III ARCH 631

F2007abn

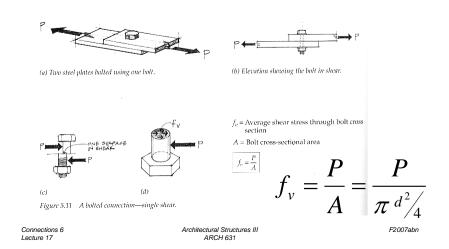
Double Shear


seen when 3 members are connected

$$\Sigma F = 0 = -P + 2(\frac{P}{2})$$

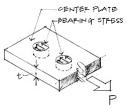
(two shear planes)

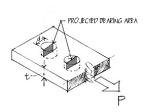
$$f_{v} = \frac{P}{2A} = \frac{P/2}{A} = \frac{P/2}{\pi^{d^{2}/4}}$$



Free-body diagram of middle section of the bolt in shear. Figure 5.12 A bolted connection in double shear.

F2007abr

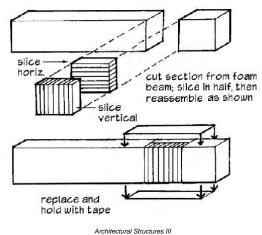

Single Shear


seen when 2 members are connected

Bearing Stress

- compression & contact
- projected area

Bearing stress on plate.


$$f_p = \frac{P}{A_{projected}} = \frac{P}{td}$$

Connections 8 Lecture 17

Architectural Structures III ARCH 631

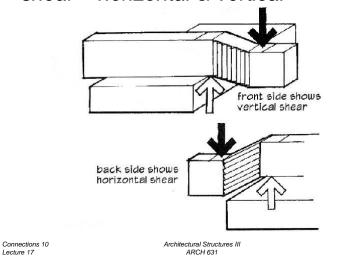
Beam Stresses

shear – horizontal & vertical

Connections 9 Architectural Structures III F2007abn
Lecture 17 ARCH 631

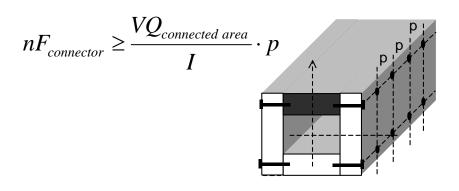
Connectors Resisting Beam Shear

- · plates with
 - nails
 - rivets
 - bolts
- splices
- V from beam load related to V_{longitudinal}


In longitudinal
$$nF_{connector} \geq rac{VQ_{connected\ area}}{I} \cdot p$$

 $\frac{V_{longitudinal}}{V_{longitudinal}} = \frac{VQ}{V}$

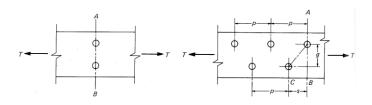
Connections 11 Architectural Structures III F2007abn
Lecture 17 ARCH 631


Beam Stresses

shear – horizontal & vertical

Vertical Connectors

isolate an area with vertical interfaces

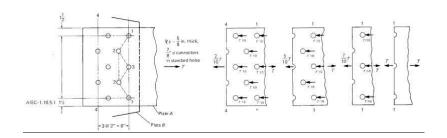


Architectural Structures III

Connections 12 Lecture 17 F2007abn

Tension Members

- members with holes have reduced area
- increased tension stress
- A_e is effective net area $f_t = -\frac{1}{2}$


Connections 13 Lecture 17

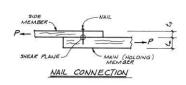
Architectural Structures III ARCH 631

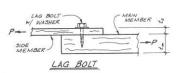
F2007abn

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too

Connections 14 Lecture 17


Architectural Structures III ARCH 631


F2007abn

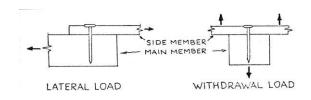
Wood Connectors

- adhesives
 - used in a controlled environment
 - can be used with nails
- mechanical
 - nails
 - bolts
 - lag bolts or lag screws
 - split ring and shear plate connectors


Connections 15 mber rivets Applied Architectural Structures

F2012abn

Wood Connections

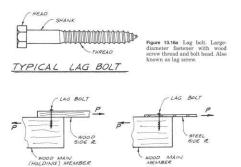


Lecture 17

ARCH 631

Nails

- tension stress (pullout)
- shear stress
- nails presumed to share load by distance from centroid of nail pattern

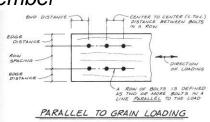

Connections 17 Architectural Structures III F2007abn
Lecture 17 ARCH 631

Lag Screws

- tension stress (pullout)
 - avoid parallel to grain
- shear stress

Connections 19

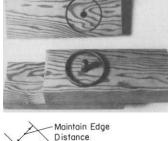
Lecture 17

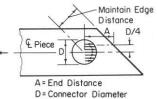

SHEAR TYPE CONNECTIONS

Architectural Structures III
ARCH 631

F2007abn

Bolts

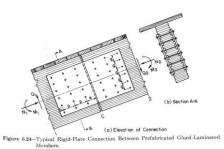

- bearing stress
 - parallel to grain
 - perpendicular to grain
- shear stress
- tension stress in member
- concerned with end shear rupture



Connections 18 Lecture 17 Architectural Structures III ARCH 631 F2007abn

Split Ring Connectors

- bearing stress
 - parallel to grain
 - perpendicular to grain
- shear stress
- tension stress in member
- concerned with end shear rupture
- (like bolts)

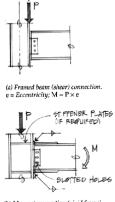


Connections 20 Lecture 17

Architectural Structures III ARCH 631

Plate Connections

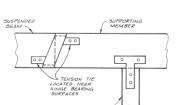
- rigid
 - bolts or nails
 - plate
 - continuous at top & bottom
- shear
 - metal plate with teeth

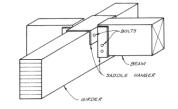

Connections 21 Lecture 17

Architectural Structures III ARCH 631

F2007abn

Steel Connections

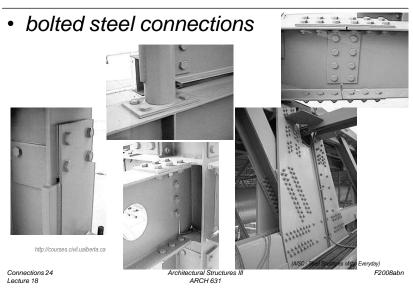

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending



(b) Moment connection (rigid frame). M = Moment due to beam bending

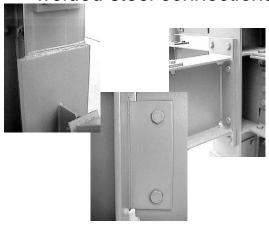
Miscellaneous Connectors

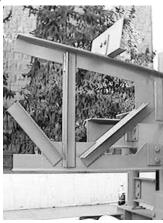
- beam hangers
- frame anchors
- seats
- etc...



Connections 22 Lecture 17

Architectural Structures III ARCH 631


F2007abn

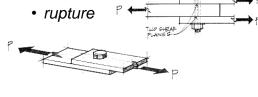

Bolts

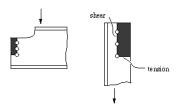
Welds

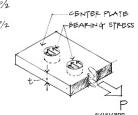
welded steel connections

Connections 25 Lecture 17

Architectural Structures III ARCH 631

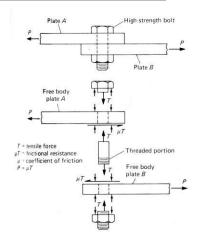

F2007abn


F2007abn


Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double

Connections 26 Lecture 17


Architectural Structures III ARCH 631

Bolts

- types
 - materials
 - high strength
 - location of threads
 - included
 - excluded

- friction or bearing
 - · always tightened

Bolted Connection Design

- Unified steel
 - shear:

$$R_a \le \frac{R_n}{\Omega} \quad R_u \le \phi_v R_n$$

$$\Omega = 2.00 \quad \phi_v = 0.75$$

- · bolt strengths
- bolt types
 - A325-SC, A490-SC
 - · A325-N, A490-N
 - · A325-X, A490-X

		8		Avai	ilab		She		os			
N	ominal Bolt	Diametr	er, d, in.		,	/a		1/4	1	//0		1
	Nominal I	Bolt Area	, in. ²		0.	907	0.	442	0.	601	0	785
ASTM	Thread	F _{ity} /Ω (ksi)	¢F _{av} (ksi)	Load-	r_{a}/Ω	φfa	r_0/Ω	φr _a	$r_{\rm e}/\Omega$	φε _n	r_0/Ω	05
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFO
Group	N	27.0	40.5	S	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2	24.3 48.7	21,2	31.8 63.6
A	x	34.0	51.0	S	10.4	15.7 31.3	15.0 30.1	22.5 45.1	20.4	30.7 61.3	26.7 53.4	40.0 80.1
Group	N	34.0	51.0	S	10.4	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1
В	x	42.0	63.0	S D	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.5 98.9
A307	(-)	13.5	20.3	S	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6 21.2	15.9 31.9
No	ominal Bott	Diamete	er, d, in.		1	/8	1	1/4	1	³ /e	1	1/2
	Nominal Bolt Area, in. ²			0.994		1.	1.23		1.48		1.77	
ASTM	Thread	F _{in} /Ω (ksi)	♦F _{hr} (ksi)	Load-	r_0/Ω	φr _n	r_0/Ω	¢r _n	η/Ω	φr _e	r_0/Ω	06
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group	N	27.0	40.5	S D	26.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7 143
A	х	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181
Group	N	34.0	51.0	S	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181
В	x	42.0	63.0	S	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223
A307	-	13.5	20.3	S	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9
ASD	LRFD	For end	loaded or	nnections	greater t	nan 38 in.	, see AISI	Specific	ation Table	J3.2 foo	strote b.	
2 = 2.00	$\varphi=0.75$											

Connections 28 Lecture 17 Architectural Structures III ARCH 631 Su2011abn

Bolted Connection Design

- Unified steel
 - bearing:
 - bolts rarely fail by bearing
 - · other part fails first
 - slip critical
 - · tightened down
 - holes are 1/16" larger
 - effective hole widths are 1/8" more

Connections 29

Applied Architectural S

-	ailabl		ed o	on E	dge	Dis			1010	
			kij	os/in.	thick	ness				
		// outs	neg neg	icon=#	Nom	inal Bolt I	Diameter,	d, in.		
Hole Type	Edge Distance L _e , in.	F _o ksi		5/8		3/4	7/8			1
			r_a/Ω	0rn	r_0/Ω	0rn	r_n/Ω	φr _a	r_a/Ω	0fa
	EL THE		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFE
100-20	11/4	58	31.5	47.3	29.4	44.0	27.2	40.8	25.0	37.5
STD	1.74	65	35.3	53.0	32.9	49.4	30.5	45.7	28.0	42.0
SSLT	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	53.3 59.7	79.9	51.1	76,7
-	1000	58	28.3	42.4	26.1	39.2	23.9	35.9	57.3	85.9
SSLP	11/4	65	31.7	47.5	29.3	43.9	26.8	40.2	23.2	31.0
	2	58	43.5	65.3	52.2	78.3	50.0	75.0	46.B	70.1
		65	48.8	73.1	58.5	87.8	56.1	84.1	52.4	78.6
-31/4.88	11/4	58	29.4	44.0	27.2	40.8	25.0	37.5	21.8	32.6
ovs	2	65	32.9	49.4	30.5	45.7	28.0	42.0	24.4	36.6
-		58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	51.1 57.3	76.7 85.9	47.9 53.6	71.8
		58	16.3	73.1	10.9	16.3	5,44	816	53.6	80.4
	11/4	65	18.3	27.4	12.2	18.3	6.09	9.14		12
LSLP		58	42.4	63.6	37.0	55.5	31.5	47.3	26.1	39.2
	2	65	47.5	71.3	41.4	62.2	35.3	53.0	29.3	43,9
	11/4	58	26.3	39.4	24.5	36.7	22.7	34.0	20.8	31.3
LSLT	174	65	29.5	44.2	27.4	41.1	25.4	38.1	23.4	35.0
	2	58 65	36.3	54.4	43.5 48.8	65.3 73.1	44.4	66.6 74.6	42.6	63.9 71.6
STD, SSLT,	100	-	40.6	0.010	1000	7	49.8	-	-	-
SSLP. OVS.	Le ≥ Le tut	58	43.5	65.3	52.2	78.3	60.9	91.4	69.6	104
LSLP	4-41	65	48.8	73.1	58.5	87.8	68.3	102	78.0	117
LSLT	$L_{\sigma} \ge L_{\sigma \ tot}$	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1 85.3	58.0 65.0	87.0 97.5
Edge distance for full bearing		STD, SSLT, LSLT	15/8		115/16		21/4		29/16	
stren		OVS	17	1/16	2		25	/16	21	/8
Le≥ Le	Le tura, in. SSLP 111/16 2 25/16		/16	211/16						
		LSLP	21	/16	2	7/16	27)	'a	31	/4
	t-slotted hole t-slotted hole sized hole	oriented oriented	transversi	to the lin	e of force	7/16			31	A STATE OF THE PARTY OF THE PAR

Bolted Connection Design

bearing at bolt holes

$$R_u \le \phi R_n$$

$$\phi = 0.75$$

$$R_n = 1.2L_c t F_u \le 2.4 dt F_u$$

- deformation isn't concern

$$R_n = 1.5 L_c t F_u \le 3.0 dt F_u$$

long slotted holes

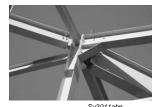
$$R_n = 1.0 L_c t F_u \le 2.0 dt F_u$$

Su2011abr

L_c – clear length to edge or next hole

Bolted Connection Design

single shear or tension


 $R_u \leq \phi R_n$ $\phi = 0.75$

double shear

$$R_n = F_n 2A_h$$

 $R_n = F_n A_h$

- bolt area
 - threads excluded
 - threads included

Connections 30 Lecture 17

Architectural Structures III ARCH 631

Tension Members

- $A_{P} = A_{D}U$
 - A_n is actual net area
 - U is shear lag factor by element type

$$A_n = A_g - A_{of \ all \ holes} + t\Sigma \frac{s}{4g}$$

Connections 32

Architectural Structures III ARCH 631

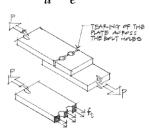
Su2011abn

Tension Members

limit states for failure

 $R_{u} \leq \phi R_{n}$

1. yielding


 $\phi = 0.9$ $R_n = F_v A_o$

2. rupture* $\phi = 0.75$ $R_n = F_u A_e$

A_a - gross area

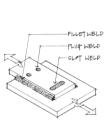
A_e - effective net area

 F_{ij} = the tensile strength of the steel (ultimate)

Connections 33 Lecture 17

Architectural Structures III ARCH 631

Su2011ahr

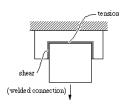

F2007abn

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- · weld materials
 - F70XX

- E60XX

 $F_{\text{EXX}} = 70 \text{ ksi}$



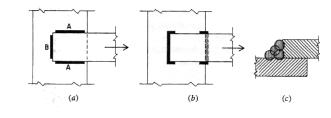
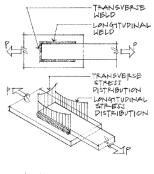
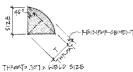


TABLE Minimum Size o	
Material Thickness of Thicker Part Joined, in. (mm)	Minimum Size of Fillet Weld[a] in. (mm)
To ½ (6) inclusive Over ½ (6) to ½ (13) Over ½ (13) to ¾ (19) Over ¾ (19)	1's (3) 3's (5) 1'4 (6) 5's (8)
a] Leg dimension of fillet welds. Single pass welds must b) See Section J2.25 for maximum size of fillet welds.	t be used.

Welded Connection Design

- considerations
 - shear stress
 - yielding
 - rupture


Connections 34 Lecture 17


Architectural Structures III

F2007abn

Welded Connection Design

- shear failure assumed
- throat
 - -T=0.707 x weld size
- area
 - -A = Tx length of weld
- weld metal generally stronger than base metal (ex. $F_v = 50$ ksi)

Connections 36 Lecture 17

Architectural Structures III ARCH 631

Su2011abn

Welded Connection Design

- minimum
 - table
- maximum
 - material thickness (to 1/4")
 - 1/16" less
- min. length
 - 4 x size min.
 - -≥1½"

-
THROATS ,707 X WELD SIZE
FA=B
/ - CONVEX
TOE
74-04
LEG SIZE
FOOT
CONCAVE

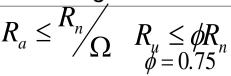
TABLE Minimum Size	
Material Thickness of	Minimum Size of
Thicker Part Joined, in. (mm)	Fillet Weld[a] in. (mm)
To ½ (6) inclusive	1/s (3)
Over ½ (6) to ½ (13)	3/46 (5)
Over ½ (13) to ¾ (19)	1/4 (6)
Over ¾ (19)	5/46 (8)

connection at web only (flanges not connected)

Connections 37 Lecture 17

Architectural Structures III ARCH 631

Su2011abn


flanges connected

(bolted web connection to facilitate

F2008abn

Welded Connection Design

shear

$$R_n = 0.6F_{EXX}Tl = Sl$$

– table for ϕ S

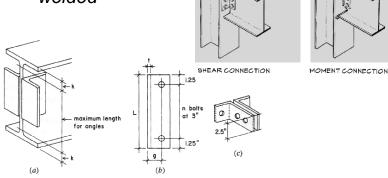
Available	Strength of Fil	let Welds
	r inch of weld (
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
3/16	2.39	4.18
1/4	4.77	5.57
5/16	5.97	6.96
3/8	7.16	8.35
7/16	5.57	9.74
1/2	8.35	11.14
5/8	11.93	13.92
3/4	14.32	16.70

(not considering increase in throat with submerged arc weld process)

Connections 38 Lecture 17

Architectural Structures III ARCH 631

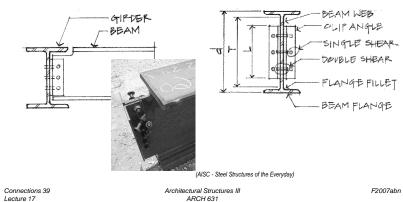
Su2011ahn


Framed Beam Connections

Connections 38

Lecture 18

- bolted
- welded



Architectural Structures III

ARCH 631

Framed Beam Connections

- terms
 - coping

ARCH 631

Framed Beam Conne

- tables for standard bolt holes & spacings
- *n* = # bolts
- bolt diameter, angle leg thickness
- bearing on beam web

Table 10-1 (continued) All-Bolted Double-Angle Connections

Main Frame Endwall Frame

3. Endwall column

Connections 41 Lecture 17

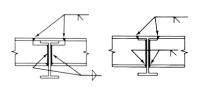
Architectural Structu ARCH 631

Other Connections

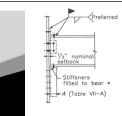
- rigid frame knees
- beam splice
- column splice

Connections 42

Lecture 17

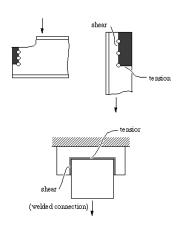

http://courses.civil.ualberta.ca

Architectural Structures III ARCH 631


F2007abn

Other Beam Connections

- seated beam
 - unstiffened
 - stiffened
- continuous
 - beam to column
 - beam to beam



F2007abr

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Connections 43 Architectural Structures III

Beam Connections

LRFD design of connected elements

shear yielding $\phi = 1.00$ $R_n = 0.60 F_v A_g$

 shear rupture $\phi = 0.75$ $R_n = 0.60 F_n A_{nn}$

– block shear rupture $\phi = 0.75$

$$R_{n} = 0.6F_{u}A_{nv} + U_{bs}F_{u}A_{nt} \le 0.6F_{y}A_{gv} + U_{bs}F_{u}A_{nt}$$

where U_{hs} is 1 for uniform tensile stress

Su2011abn

Beam Connections

block shear rupture
 tension rupture

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

Beam Connections

- tension yielding

$$\phi = 0.90 \qquad R_n = F_y A_g$$

tension rupture

$$\phi = 0.75 \qquad R_n = F_n A_e$$

- flexural yielding
$$\phi_b = 0.90$$
 $M_n = F_y Z_{(net)}$

- local web buckling
- lateral torsional buckling

Connections 46 Lecture 17

Architectural Structures III ARCH 631

Su2011abn

Beam Bearing

- design considerations
 - web crippling
 - base plate bending
 - bearing on concrete, etc.
- load distributed

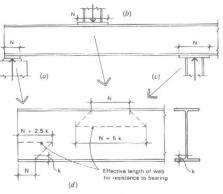


Figure 9.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).

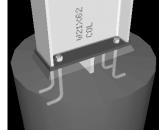
Connections 46 Lecture 17

Architectural Structures III ARCH 631

F2007abn

Connections 47 Lecture 17

Architectural Structures III ARCH 631


F2007abr

Column Base Plates

- attached by anchor bolts
 - usually 4
 - 2 if no moment
- plate level
 - by shims & grout
 - leveling nuts
- considers
 - bearing on steel
 - bending of plate

http://courses.civil.ualberta.ca

http://www.steel-connections.com

Connections 48 Lecture 17 Architectural Structures III ARCH 631