**Applied Architectural Structures:** STRUCTURAL ANALYSIS AND SYSTEMS

ARCH 631 **D**R. ANNE NICHOLS **F**ALL 2013



# seismic design

Seismic Design 1 Lecture 17

Applied Architectural Structures ARCH 631

F2009abr

# Earthquake Design

- dynamic vs. static loading
  - amplification of static affect
  - time duration
  - acceleration & velocity



a) Possible ground movements-normally accelerations in the horizontal plane are the largest and most significant



Typical accelerogram data: North-south component of ground acceleration recorded for the 1940 EI Centro, California, earthquake (recorded 4 mi. from the causative fault on deep alluvium).

Seismic Design 2 Lecture 16

Architectural Structures III ARCH 631

F2007abr

# Earthquake Design

- hazard types
  - surface fault ruptures
  - ground failures
  - tsunamis (sea waves)



Lecture 17



ARCH 631



F2009abr

# Earthquake Design

hazard types: ground shaking



F2007abr

# Earthquake Design

- fundamental considerations
  - building configuration
    - · symmetry with respect to mass
  - stiffness or vibration control
    - symmetry with respect to lateral resistance mechanisms
    - member sizes, rigidity, braces, dampers
  - anchorage of parts and components
    - seismic joints
  - "tie the building together"

| Seismic Design 5 |
|------------------|
| Lecture 16       |

Architectural Structures III ARCH 631

# Earthquake Design



- seismic joints

– L, T, H shapes bad





Seismic Design 7 Lecture 16 Architectural Structures III ARCH 631

F2007abn

F2007abn

îì

Д

Seismic joint

(actually quite narrow)

# Earthquake Design

• building response







(b) Large separation-preferred.

Seismic Design 6 Lecture 16

Architectural Structures III ARCH 631 F2007abn



# <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image>

# Earthquake Design

### • codes

- purpose is to provide a simple uniform method of determining potential earthquake forces in any location with enough accuracy to ensure a safe and economical building design
- National Earthquake Hazards
   Reduction Program (NEHRP)



 evaluate structural response (spectrum) to earthquake (motion vs. time)

Seismic Design 10 Lecture 16 F2007abn

# Frequency and Period

- natural period of vibration
  - avoid resonance
  - hard to predict seismic period
  - affected by soil
  - short period
    - high stiffness
  - long period
    - low stiffness



"To ring the bell, the sexton must pull on the downswing of the bell in time with the natural frequency of the bell."

Seismic Design 9 Lecture 16 Architectural Structures III ARCH 631 F2007abn

# Earthquake Design Loads

- derived from W & amplification factors
- at base of structure:
  - Z, zone
  - I, importance (1.0 1.5)
  - C, stiffness related to period of vibration
  - $-R_W$ , response modifications for building type (1.25 8)
- distribution per floor

   simple vs. tall <sup>W</sup><sub>x</sub>h,



 $v_1$   $w_1$   $w_2$   $w_2$   $w_3$   $w_2$   $w_3$   $w_2$   $w_3$   $w_2$   $w_3$   $w_2$   $w_3$   $w_2$   $w_3$   $w_3$   $w_2$   $w_3$   $w_3$ 

Seismic Design 11 Lecture 16

# Earthquake Design Loads (ASCE-7)

• at base of structure:

 $V = C_{\rm s} W$ 

- W, usually dead load but can include some live load
- C<sub>s</sub>, seismic design coefficient

$$C_s = \frac{S_{DS}}{(R/I)}$$
 but not greater than  $\frac{S_{D1}}{T(R/I)}$ 

- S<sub>DS</sub>, short period design spectral response acceleration
- $-S_{D1}$ , one second design spectral response acceleration
- R, response modification factor
- I, importance factor
- T, building period
- S<sub>1</sub>, mapped one-second spectral acceleration F2012abr ARCH 631 Lecture 16

# Earthquake-Resistant Structures

- absorb energy input from ground motion
- pins can't, rigid frames can
  - energy goes into forming plastic hinges (ductility)
  - continuous
  - steel, timber or reinforced concrete
- redundancy helpful
- use rigid diaphragms
- horizontal members fail before verticals

Seismic Design 13 Lecture 17

# Earthquake Design Loads (ASCE-7)



# Earthquake Design

• soft first stories - problematic



(b) Reduced Story Strengt

PEFLECTION Δ

(a) Deflection of Structure (b) Deflection of Structure with Rigid Superstructure

Architectural Structures III

ARCH 631

Figure 3.22 Deformation of a Building with Soft First Story

Seismic Design 13 Lecture 16

with Uniform Stiffness

Figure 3.21 Building Types with Soft First Story

- ground level story weaker than those above
  - usually higher
  - · reduced strength in vertical elements
  - significantly increased mass above

F2007abn

Heavy Cladding

# Earthquake Design

• want horizontal elements to fail before vertical elements do



Seismic Design 14 Lecture 16

Architectural Structures III ARCH 631

## Earthquake Design

tuned mass damping systems



Seismic Design 16 Lecture 16

Architectural Structures III ARCH 631

F2007abr

F2007abr

# Earthquake Design

- passive base isolation
  - low stiffness layer between foundation and structure







Seismic Design 15 Lecture 16

Architectural Structures III ARCH 631

F2007abr

# Earthquake Design

- dampers
- elastomer bearings
  - neoprene or rubber
- sliding systems
- friction pendulum systems





Architectural Structures III ARCH 631

F2007abn

# Sendai Mediatheque, Japan, 2011





F2011abn

itectural Structures III ARCH 631

# Architectural Considerations



### Video – Buildings at Risk

Seismic Design 18 Lecture 16 Architectural Structures III ARCH 631 F2007abn