Applied Architectural Structures: STRUCTURAL ANALYSIS AND SYSTEMS

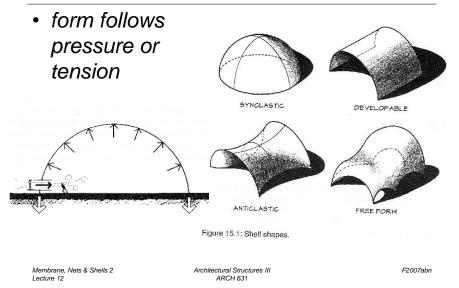
ARCH 631 DR. ANNE NICHOLS **F**ALL 2013

lecture

Denver Airport - Birdair.com


F2009abn

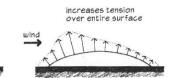
membrane, net & shell structures


Membrane, Nets & Shells 1 Lecture 13

```
Applied Architectural Structures
      ARCH 631
```

Membrane and Net Structures

Membrane and Net Structures



Membrane and Net Structures

- · sensitive to aerodynamic effects of wind
 - fluttering

wind

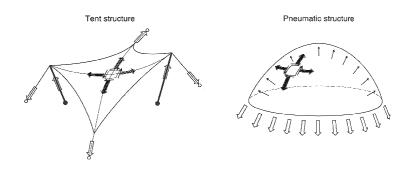
tends to collapse inward on windward side

(a) STEEP RISE

- stabilization
 - rigid supporting framework - prestressing of surface

Membrane Nets & Shells 4 Lecture 12

Architectural Structures III ARCH 631



(b) SHALLOW RISE

F2007abr

Membrane and Net Structures

 tensile stress <u>and</u> tangential shear stresses occur

Membrane, Nets & Shells 5 Lecture 12

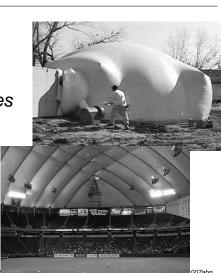
Architectural Structures III ARCH 631

Air-Supported Structures

• pressure slightly higher than atmospheric

• greater spans than

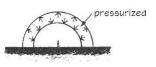
• light loads

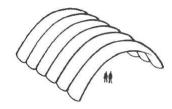

air-inflated

AIR SUPPORTED

Pneumatic Structures

- internal pressure
 - air-supported: entire volume
 - air-inflated: cavities
 - ribs
 - dual walls


Membrane, Nets & Shells 6 Lecture 12


Archit

ARCH 631

Air-Inflated Structures

- higher degree of pressurization
- pressure doesn't directly balance loads
- buckling or folding results in collapse
- · flexibility in space

AIR INFLATED

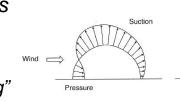
Membrane, Nets & Shells 7 Lecture 12

Architectural Structures III ARCH 631

F2007abr

F2007abr

pressurized


Membrane, Nets & Shells 8 Lecture 12

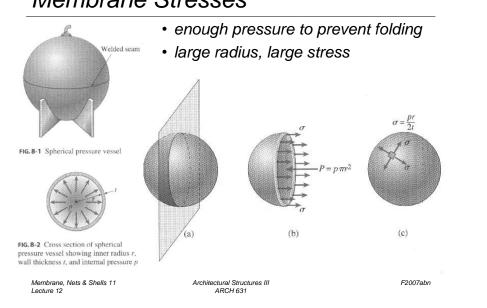
Architectural Structures III ARCH 631

F2007abr

Loads & Behavior

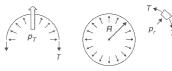
- snow accumulation
 - shape
 - heat loss
- avoid large concentrated loads
- wind loads
 - suction
 - tension
 - "buckling"

 p_0


 p_1

F2007abn

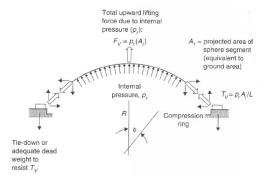
 $p_1 > p_0$


Membrane, Nets & Shells 9 Lecture 12 Architectural Structures III ARCH 631

Membrane Stresses

Membrane Stresses

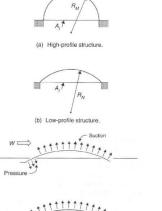
pressure is constantly applied stress


General relationship: $p_r = T_1/R_1 + T_2/R_2$ For a sphere: $R_1 = R_2 = R$ $T_1 = T_2 = p_r R/2$

- (a) Circular membrane of unit width carrying an internal pressure p_i . Tension forces in membrane: $T = p_r R$.
- (b) Spherical membrane carrying an internal pressure of $\rho_r.$

Membrane, Nets & Shells 10 Lecture 12 Architectural Structures III ARCH 631 F2007abr

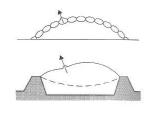
Supports


- air-supported
 - need airtight seal
 - resists uplift and thrust
 - "inverted" arch
 - containment rings

Membrane, Nets & Shells 12 Lecture 12 Architectural Structures III ARCH 631

Profile Selection

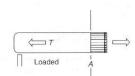
- lower profile
 - higher stresses
 - lower air volume
 - can be used to avoid wind pressure effects

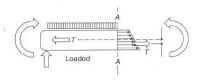

Membrane, Nets & Shells 13 Lecture 12

Architectural Structures III ARCH 631

Punctures

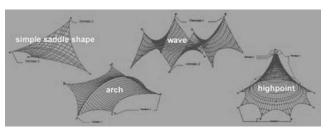
- fracture or rip from redistribution of stresses
- air-supported
 - low pressure
 - gradual deflation
- air-inflated
 - isolated cells deflate
- design in suspension





Air-Inflated Members

- prestressed in tension
- structural stresses added
- increase in tension



Membrane, Nets & Shells 14 Lecture 12

Architectural Structures III ARCH 631 F2007abn

Net and Tent Structures

- low curvatures, high stress (big radius)
- · avoid flat areas
- carefully place high & low points

Basic Types of Tensile Structures (© Tentech)

Membrane, Nets & Shells 16 Lecture 12 Architectural Structures III ARCH 631 F2007abn

Membrane, Nets & Shells 15 Lecture 12 F2007abr

F2007abr

Support Conditions

- compression masts
- uplift at ground
- free edges can be stiffened with cables
- stress reduction at high points by a cable ring

Membrane, Nets & Shells 17 Lecture 12 Architectural Structures III ARCH 631 F2007abn

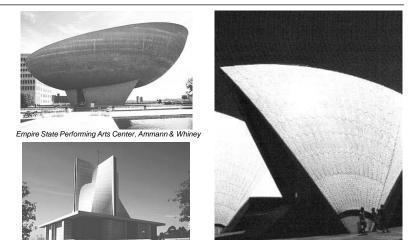
Materials

- strength
 - tear resistant
 - bi-directional
- durability
 - ultraviolet
 effects
 - creep
 - corrosion in metals

Form Development

<complex-block>

Shells


- similar to membranes, domes & vaults
- THIN
- rigid

Membrane, Nets & Shells 19 Lecture 12 Architectural Structures III ARCH 631 F2007abn

Membrane, Nets & Shells 20 Lecture 12 Architectural Structures III ARCH 631

Shells

Membrane, Nets & Shells 21 Lecture 12

Architectural Structures III ARCH 631

F2007abn

Synclastic

surface of revolutions

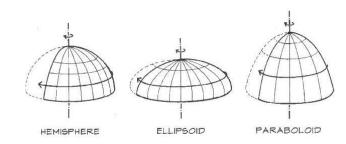


Figure 15.2: Rotational surfaces.

Membrane, Nets & Shells 23

Lecture 12

Architectural Structures III ARCH 631

F2007abr

Membrane, Nets & Shells 24 Lecture 12

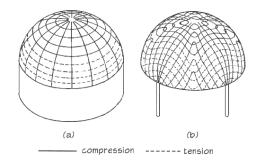
Architectural Structures III ARCH 631

F2007abn

Shell Types

- shape classifications
 - developable:
 - singly curved (vault)
 - synclastic
 - doubly curved
 - same direction
 - anticlastic:
 - · doubly curved
 - · opposite curvature
 - free form

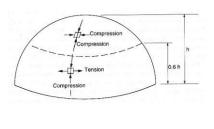
SYNCLASTIC DEVELOPABLE ANTICLASTIC FREE FORM

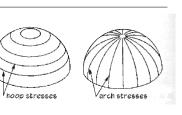

Membrane, Nets & Shells 22	
Lecture 12	

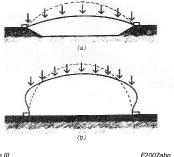
Architectural Structures III ARCH 631

F2007abr

Shell Stresses

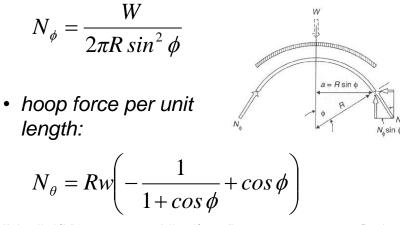

- in-plane
 - tension
 - compression
 - shear
- insignificant bending




- suitable for distributed loads
- can't handle concentrated loads well

Spherical Shells

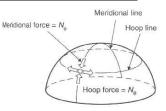
- arch of revolution
- compression
- some tension
 - "bow"

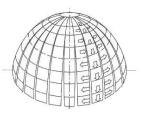


Membrane, Nets & Shells 25 Lecture 12 Architectural Structures III ARCH 631

Meridional and Hoop Forces

• meridional force per unit length:

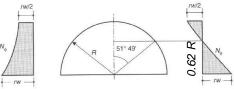



Membrane, Nets & Shells 27 Lecture 12

Architectural Structures III ARCH 631 F2007abn

Forces in Spherical Shells

- similar to plates
 - two directions of forces
 - shear
 - maintain curvatures
- meridional- arch direction
- hoop radial direction
 - can see tension
- holes redistribute stresses
 edges need reinforcement



Membrane, Nets & Shells 26 Lecture 12 Architectural Structures III ARCH 631 F2007abr

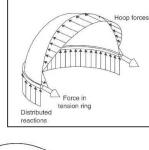
Distribution and Concentrated Forces

- size distributions
- $cos(51^{\circ}49')R = 0.62R$

(a) Meridional forces.

• concentrated force causes $N_{\phi} \rightarrow \infty$

Membrane, Nets & Shells 28 Lecture 12 Architectural Structures III ARCH 631



F2007abr

7

Support Conditions

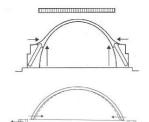
- · absorb horizontal thrust
 - tension ring
 - being pushed out
 - need to be continuous
 - can be used as foundation
- top (crown) rings
 - in compression

Membrane, Nets & Shells 29 Lecture 12 Architectural Structures III ARCH 631

Buckling & Lateral Loading

- instability
 - compression

- moment of inertia
- (a) Snap-through buckling.
- low stress levels
- local
- snap-through
- lateral loading
 shear


(b) Local buckling.

Membrane, Nets & Shells 31 Lecture 12

Architectural Structures III ARCH 631 F2007abn

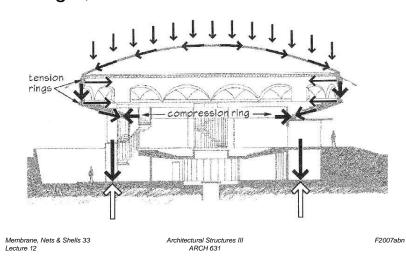
Support Conditions

- buttresses
- · edge restraint effects
 - deformations different
 - fixed edges
 - bending stress
 - deep section
 - pinned edges
 - still induces bending
 - post-tensioning helps stiffen

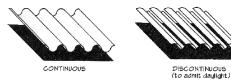
K
11

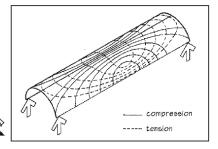
Membrane, Nets & Shells 30 Lecture 12 Architectural Structures III ARCH 631 F2007abn

Annunciation Greek Orthodox Church


• Wright, 1956

Membrane, Nets & Shells 32 Lecture 12 Architectural Structures III ARCH 631


Annunciation Greek Orthodox Church


• Wright, 1956

Cylindrical Shells

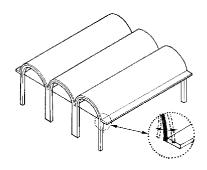
- can resist tension
- shape adds "depth"

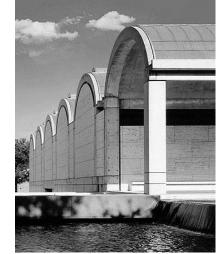
not vaults barrel shells

TRANSVERSE FOLDING

Membrane, Nets & Shells 34 Lecture 12 Architectural Structures III ARCH 631 F2007abn

Kimball Museum, Kahn 1972




Membrane, Nets & Shells 35 Lecture 12 Architectural Structures III ARCH 631 F2007abn

Kimball Museum, Kahn 1972

FREE FORM

• outer shell edges

Membrane, Nets & Shells 36 Lecture 12 Architectural Structures III ARCH 631

Kimball Museum, Kahn 1972

• skylights at peak i i i L top part of shell is in compression ottom part of www.GreatBuildings Membrane, Nets & Shells 37 Architectural Structures II. F2007abr

ARCH 631

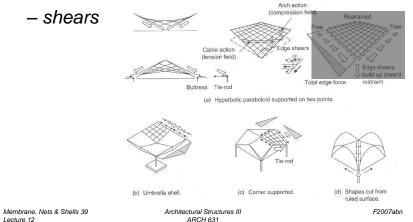
Anticlastic Shells (Hyperbolic Paraboloid)

- saddle or "ruled" shapes
- surface generated with straight lines

- tension follows "cable drape"
- compression follows "arch"

Membrane, Nets & Shells 38 Lecture 12

Architectural Structures III ARCH 631


F2007abr

Anticlastic Shell Behavior

- edge conditions offer restraint
 - tie rods useful

Lecture 12

Lecture 12

Zarzuela Hippodrome, Torroja 1935

http://www.arch.mcgill.ca

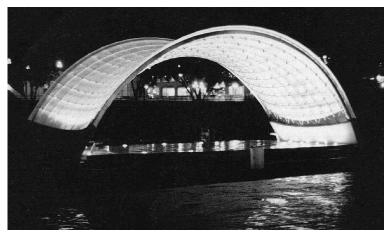
Membrane, Nets & Shells 40 Lecture 12

Architectural Structures III ARCH 631

Zarzuela Hippodrome, Torroja 1935 tie-down prevents cantilever shell collects from tipping roof load and forward transfers it to column *** uplift of tie-down helps support floor and canopy name and send that Service Less and compression ----- tension Membrane, Nets & Shells 41 Architectural Structures III F2007abn ARCH 631 Lecture 12

Heilmajer Memorial Bandstand

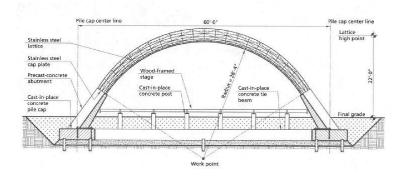
• Kramer, 2002



Membrane, Nets & Shells 43 Lecture 12

Architectural Structures III ARCH 631 F2007abn

Heilmajer Memorial Bandstand


• Kramer, 2002

Membrane, Nets & Shells 42 Lecture 12 Architectural Structures III ARCH 631 F2007abn

Heilmajer Memorial Bandstand

• Kramer, 2002

Membrane, Nets & Shells 44 Lecture 12 Architectural Structures III ARCH 631