We are analyzing Central Terminal B of the Sacramento International Airport in Sacramento, California This Structure is linked to parking and through a APM Station to Concourse B. ### Sacramento Airport Architect & Team **CORGAN** was the primary architect. **L.A.Fuess Partners Inc.** was the primary structural engineer. The collaborative design process includes stakeholders, community members, passengers, and airport tenant. Other local support firms include: Lionakis Design Group, Dreyfuss and Blackford, Kennedy/Jenks, Capital Engineering, TTE, Hatch Mott MacDonald, Enovity, and Lea+Elliott. Sacramento Airport Building Layout **Basement** 1st Floor 2nd Floor 3rd Floor Sacramento Airport Building Layout **Basement** 0 0 FACILITY 1st Floor SUPPORT ELEC. 3,415 SF 2,495 SF VED DPS 186 SF 587 SF CONCESSION 2,871 SF TOILET TOILE B.S.O. 2nd Floor 188 SF 139 SF 2,122 SF 1,588 SF 1,156 SF TOTAL AIRLINE BAG CLAIM BAG CLAIM VESTIBULES 2,372 SF TOTAL 3rd Floor PUBLIC 35,553 SF O1 CENTRAL TERMINAL B FLOOR PLAN LEVEL 1 05.05.08 #### Central Terminal B Enlarges Cross Section ## Sacramento Airport Force Diagrams Loads # Sacramento Airport Force Diagrams # Sacramento Airport Force Diagrams # Sacramento Airport Calculating Loads ### **Dead Load Calculations** #### **DEAD LOADS** #### Roof: - Structure: - Central Atrium: (11 members) x (WT 5x 11)x 28' trib. width= 3.3k/52=.065 - Side Upper Roof: (25)x (W12x14)x (18'trib width)=6.3k=6k x 2sides=12k/140'=.086k/ft - Side Lower Roof: (25)x (W12x14)x(14' trib width)= 4.9k=5k x 2 sides=12k/140'=.086k/ft - Overhangs UpRf: [1(W12x14)+ 1(W12x16)+ 1(W16x26)+1(W30x99)]x (18'trib width)=.69k/140'=.005k/ft - Overhang LowRf: [1(W12x14)+1(W12x16)+1(W16x26)+1(W30x99)]x (14'trib width)= .54k/140'= .0038k/ft #### Total Structure loads: - Glass & Metal Cover: (NS 3.3 p.1) - Structural Glass= (15lb/ft2) x (28' tib width)=.42k/ft - Upper Metal=(2lb/ft2) x (18'tribwidth) =.036k/ft - Lower Metal=(2lb/ft) x (14' trib width) =.028k/ft Total Roof Loads: .484k/ft #### Floor Loads - Reinforced Concrete w/ Steel Decking: (12lb/ft2) x (28'trib width) =.336k/ft - Structural Glass: (15lb/ft)x (18' width) =.27k/ft - Total Floor Loads (without structural beams): .606k/ft ### Sacramento Airport Live Load Calculations #### LIVE LOADS #### Wind Loads: - Wind, 3 sec. gust wind speeds: - 85 mph at 30 ft. above the ground. (NS 15.2, pg.4) - Lateral Wind Load: (NS 15.3, pg. 3) - Vertical Projected Wall (≤10°)= 10.2 psf - Wind Uplift, Roof (enclosed) (less than 20 degrees)= 13 psf #### Live Loads: Use lobby occupancy (NS 3.4 p.1) (100lb/ft2) x [(28'trib width) x (302'length)-(10'hole width) x (52' hole length)] =800k x 2 floors= 1600k ### Surface Conditions - Cradled from the West by the Sacramento River - Site gently slopes down towards the river - The topography is in general flat - Flood Damage Protection - Massive public works project - A series of levees and a canal were made in order to divert water away from the airport to downstream of the location. - Earth had to be moved into the levees, and excavating from the site was unfeasible since the site was already in a flood plain. The solution was to gather earth from the surrounding areas (as can be seen in the Figure 4) and move it to the protective levees. ### Subsurface Conditions LUPUGRAPHIC CONTOURS CITY/COUNTY DRAINAGE MANUAL RAIN GAGE - Natural Soils - Great farmland, poor foundations - Silt, sand, or clay like - Figure 5.1 Soils 119 through 145 - Low bearing strength: near100kPA - Important Soil Characteristics - Strength, strain resistance, and stability - Site's soil now mixed with manmade fillers - Figure 5.1 Soils 101 through 105 - Better drainage, better bearing strength: near 200kPA. #### **SOIL MAP DESIGNATION**: DESCRIPTION **101**: Amador-Gillender complex, 2 to 15% slopes 102: Americanos-Urban land complex, 0 to 2% slopes 103: Andregg coarse sandy loam, 2 to 8% slopes **104**: Andregg coarse sandy loam, 8 to 15% slopes 105: Andregg-Urban land complex 8 to 15% slopes 119: Columbia sandy loam, clayey substratum, partially drained, 0 to 2% slopes 129: Cosumnes silt loam , drained, 0-2% slopes, occasionally flooded 142: Egbert clay, partially drained, 0-2% slopes, frequently flooded 145: Fiddyment fine sandy loam, 1 to 8% slopes Figure 5.1 http://soildatamart.nrcs.usda.gov/Report.aspx?Survey=CA067&UseState=CA Figure 5.2 http://www.msa.saccounty.net/waterresources/Drainage/11x17/map02.pdf ### **Foundations** #### Mat Foundation - Distributes the loads over large area - Reduces magnitude of force on a given ft² of soil. #### • Piles - Transfers loads from columns down through soil - Distributes load by friction. # Sacramento Airport Layout Concept