KEILLER BUILDING

Laboratory Building
University of Texas -- Medical Branch
Galveston, Texas

Team "That's What She Said"
Paul Gregg -- Ann Frankovich - Julie Krebs - Leslie Leffke - Adam Panter

Background

History

- Constructed in 1925 as the Laboratory Building for the University of Texas Medical Branch – Galveston, TX¹
- Architect
 - Herbert Miller Greene, Univ. of Texas campus
 - architect, 1922-1932
- Mediterranean-influenced Beaux-Arts style
- Expanded in 1932, renovated in 1995, currently undergoing structural alterations.²

0

Massing

- Primary system is load bearing masonry consisting of 1' clay tile masonry units with limestone and brick veneer (non load-bearing)
- No expansion joints
- Renovation/new construction uses more cast-in-place reinforced concrete, but the overall building system is still primarily load bearing clay masonry.

- Soil conditions

- Deep Sandy Eolian Sands of Holocene age.
- Cohesionless
- Building should be built upon piers or piles in order to create stability.

- Foundation

- Foundation

- Flooring

- Floor slabs are a one-way concrete joist system in most areas. Slabs are
 5" thick, joists are 1' deep and spaced 3' on center
- Some of the longer slab areas have tertiary members to reinforce the system. Visually the slabs become a two way system, but the bay proportions exceed the maximum aspect ratio, making them one-way.

- Flooring (cont.)

Roof system

- Roof trusses are formed of welded steel members.
- Composed of two steel angels with a gusset plate connections.
- Rigid joints.
- Truss welded to plate cast in masonry wall.

- Columns

• All interior columns composed of reinforced concrete.

CONCRETE COLUMN SCHEDULE					
MARK	SIZE	VERT. STEEL	TIES	DOWELS	DETAILS
C4	20 x 20	8, #7	#3 @ 14	8, #7 x 4'-0"	S818
C5	14 x 14	4, #7	#3 @ 14	4, #7 x 4'-0"	S818
C6	14 x 14	4, #7	#3 @ 14	4, #7 x 4'-0"	S818
C7	14 x 14	4, #7	#3 @ 14	4, #7 x 4'-0"	S818
C8	14 x 14	4, #7	#3 @ 14	4, #7 x 4'-0"	S818
C9	20 x 20	8, #7	#3 @ 14	8, #7 x 4'-0"	S818
C10	20 x 20	8, #7	#3 @ 14	8, #7 x 4'-0"	S818
C11	20 x 20	8, #7	#3 @ 14	8, #7 x 4'-0"	S818
NOTE: COLUMNS EXTEND BETWEEN 3RD AND 4TH FLOORS					

- Supports

Load Tracing

Can you say plan irregularity??

- Loads

THE TWO-MINUTE ENGINEER

FORCES

Lateral load: Forces applied parallel to level ground surface (wind, seismic, backfill, etc.)

38 psf 38 psf

Uplift: Forces applied perpendicular to level ground surface, in an upward direction, (wind uplift and vertical sessinic forces)

REACTION

Base shear: The reaction at the base of a wall or structure due to an applied lateral load - "Sliding Force"

Overturning: What happens when a lateral force acts on a wall or structure and it san't slide - "Tip Over Force."

- Loads
 - Force Diagram

- Loads
 - Moment Diagram

- Loads
 - Shear Diagram

- Loads

- Load Resisting Factors
 - The building functions as shear walls connected by a rigid diaphragm
 - Resists the overturning moment, resists torsion due to building length
 - Basically, the building functions as a monolithic structure.

Sources

- 1. http://www.utmb.edu/tour/17.htm
- 2. http://www.tsha.utexas.edu/handbook/online/articles/GG/fgr94.htm
- 3. http://www.utexas.edu/sup-portut/news-pub/images/Greene-w-fish-sm.jpg&imgrefurl="http://www.utexas.edu/sup-portut/news-pub/images/Greene-w-fish-sm.jpg.">http://www.utexas.edu/sup-portut/news-pub/images/Greene-w-fish-sm.jpg.
- 4. <a href="http://www.utexas.edu/supportut/news-pub/yg_greeneexhibit.html&h=378&w=263&sz=20&hl=en&start=4&tbnid=gJ22_sAs5coShM:&tbnh=122&tbnw=85&prev=/images%3Fq%3DGREENE,%2BHERBERT%2BMILLER%26svnum%3D10%26hl%3Den%26rls%3DDKUS,DKUS:2006-29,DKUS:en
- 5. USGS, Custom Soil Resource Report Galveston County, TX, November, 2007.
- 6. http://pubs.usgs.gov/of/1996/ofr-96-0676/downloads/images/ashfault.jpg
- 7. http://www.us.hilti.com/holus/modules/editorial/edit_singlepage.jsp?
 contentOID=23131