ARCH 631 F2013abn

## ARCH 631. Assignment #9

**Date:** 10/22/13, due 11/14/13 Worth 25 pts.

## **Problems:**

1. Complete text problem 16.5 on page 514.

**16.5.** Two  $\frac{1}{4}$ -in.-thick plywood sheets are joined by a  $\frac{3}{8}$ -in.-diameter bolt that transfers a shear force of 500 lb. Assume that the allowable stress in bearing for the plywood is 400 lb/in.<sup>2</sup>. Is the plywood overstressed in bearing?


Answer:  $f_{bg} = 5333 \text{ lb/in.}^2 \text{ plywood (overstressed)}$ 

**2.** Complete text problem 6.9 on page 274 with the following addition.

6.9. Assume that a laminated timber beam having cross-sectional dimensions of 8 in. × 20 in. is available. Based on bending-stress considerations only, how far could this beam span if it carried a uniformly distributed load of 250 lb/ft and was simply supported at either end? How far could it span if it carried the same load but was cantilevered? Assume that the allowable stress in bending is  $F_b = 2400 \text{ lb/in.}^2$  and that the beams are all adequately laterally braced. Ignore dead loads. In addition, how far could it span if it carried the same load, but was one span of a 3-span continuous beam?

Answer: 58.4 ft if simply supported.

3. Given the building and the forces shown to the right, what is the maximum diaphragm shear in the north-south direction?



**4.** For the roof diaphragm of problem 3, use the provided table from the Uniform Building Code to specify a nail and framing schedule if the joists in the diaphragm are 2 in. nominal timbers.

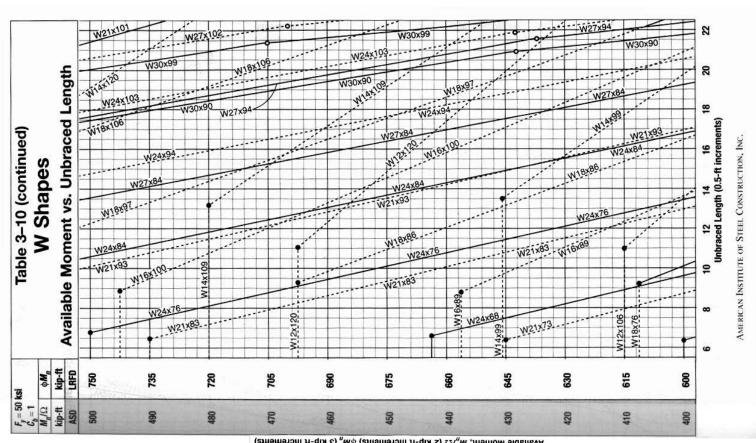
Partial Answer: Any for a 2 in. minimum nominal width of the framing member with an allowable shear of 540 lb/ft or greater for a blocked diaphragm.

- 5. Lateral stability is particularly important for steel shapes such as plate girders and wide flange sections. Describe the reasoning for the concern and ways to prevent problems.
- **6.** Select an economical ASTM A992 W-shape beam with a simple span of 40 feet. Limit the member to a maximum nominal depth of 18 in. Limit the live load deflection to L/360. The nominal loads are a uniform dead load of 1.2 kip/ft and a uniform live load of 1.1 kip/ft. The beam is braced at the 3<sup>rd</sup> points. Use the Available Moment vs. Unbraced Length curves.

**Partial** Answer: ASD:  $M_{max} = 460 \text{ k-ft}$ , or LRFD:  $M_u = 640 \text{ k-ft}$ ,  $I_{x(rea/d)} \ge 1639 \text{ in}^4$ , W18 x \_\_\_\_\_

7. A column of ASTM A992 steel is 20 feet long and supports a load of 100 kips dead load and 100 kips live load. What is the most economical W10 column section that can support the load? Use the chart provided.

**Partial** Answer: ASD lowest capacity = 224 kips, or LRFD lowest capacity = 337 kips ( $P_u = 280 \text{ kips}$ )


8. A long span steel joist with a span of 80 feet is required to support a roof. The joists are spaced at 5 ft apart, the dead load is 15 lb/ft² (not including the self weight), the live roof load is 30 lb/ft² and the live load deflection is limited to L/360 (which is that used to determine the live load limit based on deflection in the Joist catalogue tables). Using the table provided, select the most economical joist that can be used considering the self weight. (Note: longer spans that can support the load can also be used.)

**Partial** Answer:  $w_{total} \approx 360$  lb/ft (assuming a reasonable self weight).

## **LRFD**

| 1000                 | *******                                 | _                     |                    | a 50 ksi                                | waxin       | ium Yi      | eia Sti       | ength         | - Load        | s Sno         | wn in i       | ound             | s per L     | inear I          | -00t (p    | )IT)             |            |                  |               |            |
|----------------------|-----------------------------------------|-----------------------|--------------------|-----------------------------------------|-------------|-------------|---------------|---------------|---------------|---------------|---------------|------------------|-------------|------------------|------------|------------------|------------|------------------|---------------|------------|
| Joist<br>Designation | Approx. Wt<br>in Lbs. Per<br>Linear Ft. | Depth<br>in<br>inches | in I               | LOAD*<br>_bs.<br>ween                   |             |             |               |               |               |               | CLE           | AR SP            | AN IN       | FEET             |            |                  |            |                  |               |            |
|                      | (Joists Only)                           | littles               | 47-59              | 60-64                                   | 65          | 66          | 67            | 68            | 69            | 70            | 71            | 72               | 73          | 74               | 75         | 76               | 77         | 78               | 79            | 80         |
| 40LH08               | 16                                      | 40                    | 24900              | 24900                                   | 381         | 370         | 361           | 351           | 342           | 333           | 325           | 316              | 309         | 301              | 294        | 288              | 280        | 274              | 267           | 261        |
| 40LH09               | 21                                      | 40                    | 32700              | 32700                                   | 150<br>498  | 144<br>484  | 138<br>472    | 132<br>459    | 127<br>447    | 122<br>436    | 117<br>424    | 112<br>414       | 108<br>403  | 104<br>394       | 100<br>384 | 97<br>375        | 93<br>366  | 90<br>358        | 86<br>349     | 83<br>342  |
| 40LH10               | 21                                      | 40                    | 36000              | 36000                                   | 196<br>550  | 188<br>535  | 180<br>520    | 173<br>507    | 166<br>493    | 160<br>481    | 153<br>469    | 147<br>457       | 141<br>445  | 136<br>435       | 131        | 126<br>414       | 122<br>403 | 118<br>393       | 113<br>382    | 109        |
| 40LH11               | 22                                      | 40                    | 39300              | 39300                                   | 216<br>598  | 207<br>582  | 198<br>567    | 190<br>552    | 183<br>537    | 176<br>523    | 169<br>510    | 162<br>498       | 156<br>484  | 150<br>472       | 144<br>462 | 139<br>450       | 134<br>439 | 129<br>429       | 124<br>418    | 119        |
| 002000000            | 10000                                   | 889                   |                    | 000000000000000000000000000000000000000 | 234         | 224         | 215           | 207           | 198           | 190           | 183           | 176              | 169         | 163              | 157        | 151              | 145        | 140              | 135           | 130        |
| 40LH12               | 25                                      | 40                    | 47850              | 47850                                   | 729<br>285  | 708<br>273  | 688<br>261    | 670<br>251    | 652<br>241    | 636<br>231    | 619<br>222    | 603<br>213       | 588<br>205  | 573<br>197       | 559<br>189 | 546<br>182       | 532<br>176 | 519<br>169       | 507<br>163    | 499        |
| 40LH13               | 30                                      | 40                    | 56400              | 56400                                   | 859<br>334  | 835<br>320  | 813<br>307    | 792<br>295    | 771<br>283    | 750<br>271    | 730<br>260    | 712<br>250       | 694<br>241  | 676<br>231       | 660<br>223 | 643<br>214       | 628<br>207 | 613<br>199       | 598<br>192    | 589<br>189 |
| 40LH14               | 35                                      | 40                    | 64500              | 64500                                   | 984         | 957         | 930           | 904           | 880           | 856           | 834           | 813              | 792         | 772              | 753        | 735              | 717        | 699              | 682           | 666        |
| 40LH15               | 36                                      | 40                    | 72150              | 72150                                   | 383         | 367<br>1068 | 351<br>1036   | 336<br>1006   | 323<br>978    | 309<br>949    | 297<br>924    | 285<br>898       | 273<br>874  | 263<br>850       | 252<br>828 | 243<br>807       | 233<br>786 | 225<br>766       | 216<br>747    | 729        |
| 40LH16               | 42                                      | 40                    | 79500              | 79500                                   | 427<br>1212 | 408<br>1194 | 390<br>1176   | 373<br>1158   | 357<br>1141   | 342<br>1126   | 328<br>1095   | 315<br>1065      | 302<br>1036 | 290<br>1009      | 279<br>982 | 268<br>957       | 258<br>933 | 248<br>909       | 239<br>886    | 230        |
| 4021110              | 76                                      | 40                    |                    |                                         | 469         | 455         | 441           | 428           | 416           | 404           | 387           | 371              | 356         | 342              | 329        | 316              | 304        | 292              | 282           | 27         |
| 44LH09               | 19                                      | 44                    | <b>52-59</b> 30000 | <b>60-72</b> 30000                      | <b>73</b>   | 397         | <b>75</b> 388 | <b>76</b> 379 | <b>77</b> 370 | <b>78</b> 363 | <b>79</b> 354 | <b>80</b><br>346 | 339         | <b>82</b><br>331 | 83<br>324  | <b>84</b><br>316 | <b>85</b>  | <b>86</b><br>303 | <b>87</b> 297 | 29         |
| 4411109              | 19                                      |                       | 30000              | 30000                                   | 158         | 152         | 146           | 141           | 136           | 131           | 127           | 122              | 118         | 114              | 110        | 106              | 103        | 99               | 96            | 93         |
| 44LH10               | 21                                      | 44                    | 33150              | 33150                                   | 450<br>174  | 439<br>168  | 429<br>162    | 418<br>155    | 408<br>150    | 399<br>144    | 390<br>139    | 381<br>134       | 373<br>130  | 364<br>125       | 357<br>121 | 349<br>117       | 342<br>113 | 334<br>110       | 327<br>106    | 32         |
| 44LH11               | 22                                      | 44                    | 35850              | 35850                                   | 487         | 475         | 465           | 453           | 442           | 433           | 423           | 414              | 403         | 396              | 387        | 378              | 370        | 363              | 354           | 34         |
| 44LH12               | 25                                      | 44                    | 44400              | 44400                                   | 188<br>603  | 181<br>589  | 175<br>574    | 168<br>561    | 162<br>547    | 157<br>534    | 151<br>520    | 146<br>508       | 140<br>496  | 136<br>484       | 131<br>472 | 127<br>462       | 123<br>450 | 119<br>439       | 115<br>430    | 420        |
| 44LH13               | 30                                      | 44                    | 52650              | 52650                                   | 232<br>715  | 224<br>699  | 215<br>681    | 207<br>666    | 200<br>649    | 192<br>634    | 185<br>619    | 179<br>606       | 172<br>592  | 166<br>579       | 160<br>565 | 155<br>553       | 149<br>541 | 144<br>529       | 139<br>519    | 134        |
| 4461110              | 30                                      |                       | 32030              | 32030                                   | 275         | 265         | 254           | 246           | 236           | 228           | 220           | 212              | 205         | 198              | 191        | 185              | 179        | 173              | 167           | 16         |
| 44LH14               | 31                                      | 44                    | 60600              | 60600                                   | 823<br>315  | 801<br>302  | 780<br>291    | 759<br>279    | 739<br>268    | 721<br>259    | 703<br>249    | 685<br>240       | 669<br>231  | 654<br>223       | 637<br>215 | 622<br>207       | 609<br>200 | 594<br>193       | 580<br>187    | 568<br>18  |
| 44LH15               | 36                                      | 44                    | 70500              | 70500                                   | 958         | 934         | 912           | 889           | 868           | 847           | 826           | 805              | 786         | 768              | 750        | 732              | 714        | 699              | 682           | 66         |
| 44LH16               | 42                                      | 44                    | 81300              | 81300                                   | 366<br>1105 | 352<br>1078 | 339<br>1051   | 326<br>1026   | 314<br>1002   | 303<br>978    | 292<br>955    | 281<br>933       | 912         | 261<br>891       | 252<br>870 | 243<br>852       | 234<br>832 | 227<br>814       | 219<br>796    | 780        |
| 44LH17               | 47                                      | 44                    | 87300              | 87300                                   | 421<br>1185 | 405<br>1170 | 390<br>1153   | 375<br>1138   | 362<br>1125   | 348<br>1098   | 336<br>1072   | 324<br>1048      | 313<br>1024 | 302<br>1000      | 291<br>978 | 282<br>957       | 272<br>936 | 263<br>915       | 255<br>895    | 24<br>87   |
| 200200               | (2)                                     |                       | 9E 0G118           | 5/1552                                  | 450         | 438         | 426           | 415           | 405           | 390           | 376           | 363              | 351         | 338              | 327        | 316              | 305        | 295              | 285           | 27         |
|                      |                                         |                       | 56-59              | 60-80                                   | 81          | 82          | 83            | 84            | 85            | 86            | 87            | 88               | 89          | 90               | 91         | 92               | 93         | 94               | 95            | 96         |
| 48LH10               | 21                                      | 48                    | 30000              | 30000                                   | 369<br>141  | 361<br>136  | 354<br>132    | 346<br>127    | 339<br>123    | 331<br>119    | 325<br>116    | 318<br>112       | 312<br>108  | 306<br>105       | 300<br>102 | 294<br>99        | 288<br>96  | 282<br>93        | 277<br>90     | 27°<br>87  |
| 48LH11               | 22                                      | 48                    | 32550              | 32550                                   | 399<br>152  | 390<br>147  | 382<br>142    | 373<br>137    | 366<br>133    | 358<br>129    | 351<br>125    | 343<br>120       | 337<br>117  | 330<br>113       | 324<br>110 | 318<br>106       | 312<br>103 | 306<br>100       | 300<br>97     | 29-<br>94  |
| 48LH12               | 25                                      | 48                    | 41100              | 41100                                   | 504         | 493         | 483           | 472           | 462           | 451           | 442           | 433              | 424         | 415              | 408        | 399              | 391        | 384              | 376           | 36         |
| 48LH13               | 29                                      | 48                    | 49200              | 49200                                   | 191<br>603  | 185<br>589  | 179<br>576    | 173<br>564    | 167<br>552    | 161<br>540    | 156<br>529    | 151<br>517       | 147<br>507  | 142<br>498       | 138<br>487 | 133<br>477       | 129<br>468 | 126<br>459       | 122<br>450    | 118        |
| 48LH14               | 32                                      | 48                    | 58050              | 58050                                   | 228<br>712  | 221<br>696  | 213<br>681    | 206<br>666    | 199<br>651    | 193<br>637    | 187<br>624    | 180<br>610       | 175<br>598  | 170<br>585       | 164<br>574 | 159<br>562       | 154<br>550 | 150<br>540       | 145<br>529    | 14<br>51   |
|                      |                                         |                       |                    |                                         | 269         | 260         | 251           | 243           | 234           | 227           | 220           | 212              | 206         | 199              | 193        | 187              | 181        | 176              | 171           | 16         |
| 48LH15               | 36                                      | 48                    | 66750              | 66750                                   | 817<br>308  | 799<br>298  | 781<br>287    | 765<br>278    | 748<br>269    | 732<br>260    | 252           | 702<br>244       | 687<br>236  | 672<br>228       | 658<br>221 | 645<br>214       | 633<br>208 | 619<br>201       | 607<br>195    | 599<br>189 |
| 48LH16               | 42                                      | 48                    | 76950              | 76950                                   | 943<br>355  | 922         | 901<br>331    | 882<br>320    | 864<br>310    | 844<br>299    | 826<br>289    | 810<br>280       | 792<br>271  | 777<br>263       | 760<br>255 | 745<br>247       | 730<br>239 | 715<br>232       | 702<br>225    | 688        |
| 48LH17               | 47                                      | 48                    | 86400              | 86400                                   | 1059<br>397 | 1035<br>383 | 1012<br>371   | 990<br>358    | 969<br>346    | 948<br>335    | 928<br>324    | 909              | 889<br>304  | 871<br>294       | 853<br>285 | 837<br>276       | 820<br>268 | 804<br>260       | 787<br>252    | 772        |

| AKCIIO                         | 131                |                         |                |      |         |         |         |            |         |         |        |        |         | •       | 100     | ıgıı   | 1110   | 111     | >       |       |        |        |         |        |         |        |        |         |        |        |        | 1.77                |        |        | •       |
|--------------------------------|--------------------|-------------------------|----------------|------|---------|---------|---------|------------|---------|---------|--------|--------|---------|---------|---------|--------|--------|---------|---------|-------|--------|--------|---------|--------|---------|--------|--------|---------|--------|--------|--------|---------------------|--------|--------|---------|
| is.                            |                    | o, Vax                  | kips           | LRFD | 375     | 405     | 355     | 396<br>404 | 373     | 302     | 376    | 360    | 358     | 284     | 332     | 340    | 376    | 318     | 256     | 230   | 316    | 331    | 226     | 265    | 279     | 295    | 264    | 206     | 290    | 232    | 273    | 185                 | 306    | 225    | 257     |
| $F_y = 50 \text{ ksi}$         |                    | $V_{m}/\Omega_{\nu}$    | kips           | ASD  | 249     | 270     | 237     | 269        | 249     | 201     | 250    | 246    | 239     | 189     | 221     | 227    | 251    | 212     | 171     | 200   | 100    | 221    | 150     | 177    | 186     | 197    | 176    | 137     | 193    | 155    | 182    | 123                 | 204    | 150    | 172     |
| π <sub>&gt;</sub><br>"         |                    | -                       | , ×            | in.4 | 3610    | 3000    | 2670    | 1650       | 2190    | 1710    | 2700   | 2850   | 1430    | 1530    | 1910    | 2370   | 2070   | 1240    | 1380    | 00/1  | 2100   | 1830   | 1240    | 1070   | 1530    | 1830   | 1300   | 1110    | 0091   | 1330   | 1480   | 666                 | 1550   | 1110   | 716     |
|                                |                    | -                       | ۲,             | Ħ    | 50.9    | 21.9    | 31.3    | 78.5       | 34.3    | 61.7    | 21.2   | 20.8   | 70.6    | 56.0    | 31.8    | 20.3   | 21.3   | 63.3    | 52.0    | 50.0  | 19.6   | 20.2   | 48.4    | 28.5   | 56.5    | 18.8   | 30.2   | 45.3    | 19.2   | 27.1   | 18.7   | 42.6                | 14.4   | 27.8   | 64.3    |
| <del>Q</del>                   |                    | 2                       | L <sub>p</sub> | #    | 7.38    | 7.03    | 10.2    | 11.49      | 9.50    | 14.1    | 10.2   | 7.34   | 11.3    | 13.3    | 9.40    | 6.89   | 6.50   | 11.2    | 13.2    | 9.30  | 0.78   | 6.46   | 13.2    | 9.29   | 11.1    | 6.61   | 8.80   | 13.5    | 6.39   | 9.22   | 6.36   | 15.2                | 4.87   | 8.72   | 9.47    |
| inue                           | NX<br>X            | d.                      | kips           | LRFD | 30.9    | 27.4    | 18.7    | 28.8       | 15.2    | 7.68    | 26.0   |        | 6.11    | 7.70    | 14.6    | 24.3   | 21.9   | 6.03    | 7.64    | 7.4.  | 27.5   | 20.8   | 7.54    | 13.6   | 5.93    | 21.2   | 11.6   | 7.35    | 19.4   | 12.8   | 18.8   | 7.22                | 24.1   | 11.0   | 4.02    |
| le 3–2 (continu<br>W Shapes    | Selection by $Z_x$ | BF                      | kips           | ASD  | 20.5    | 18.2    | 12.4    | 19.1       | 10.1    | 5.11    | 17.3   | 17.6   | 4.07    | 5.13    | 9.70    | 16.2   | 14.6   | 4.01    | 5.09    | 24.6  | 15.0   | 13.8   | 5.02    | 9.04   | 3.95    | 14.1   | 7.74   | 4.89    | 12.9   | 8.49   | 12.5   | 4.80                | 16.0   | 7.34   | 2.68    |
| 3-2 /                          | ectic              | ob Mrx                  | kip-ft         | LRFD | 643     | 643     | 654     | 638        | 909     | 609     | 583    | 000    | 549     | 549     | 536     | 515    | 504    | 488     | 499     | 404   | 462    | 449    | 454     | 436    | 428     | 404    | 407    | 412     | 396    | 383    | 368    | 375                 | 344    | 352    | 331     |
| Table 3-2 (continued) W Shapes | Sel                | $M_{\alpha}/\Omega_{b}$ | kip-ft         | ASD  | 428     | 428     | 435     | 424        | 403     | 405     | 388    | 373    | 365     | 365     | 356     | 342    | 335    | 325     | 332     | 070   | 306    | 299    | 302     | 290    | 285     | 569    | 271    | 274     | 269    | 255    | 245    | 250                 | 229    | 234    | 220     |
| F                              |                    | <b>⊕</b> Max            | kip-ft         | LRFD | 1060    | 1050    | 1050    | 1040       | 983     | 975     | 953    | 2 1    | 911     | 878     | 863     | 840    | 829    | 803     | 795     | 18.   | 743    | 735    | 720     | 869    | 869     | 664    | 929    | 646     | 645    | 611    | 009    | 573                 | 574    | 563    | 551     |
|                                |                    | $M_{p\chi}/\Omega_b$    | kip-ft         | ASD  | 902     | 669     | 969     | 694        | 654     | 646     | 634    | 800    | 909     | 584     | 574     | 559    | 551    | 534     | 529     | 070   | 499    | 489    | 479     | 464    | 464     | 442    | 437    | 430     | 429    | 407    | 399    | 382                 | 382    | 374    | 367     |
|                                | _                  |                         | ×              | in.3 | 283     | 280     | 279     | 278        | 262     | 260     | 254    | 244    | 243     | 234     | 230     | 224    | 221    | 214     | 212     | 117   | 100    | 196    | 192     | 186    | 186     | 171    | 175    | 173     | 771    | 163    | 160    | 157                 | 153    | 150    | 147     |
| N                              | Υ                  |                         | Shape          |      | W30×90" | W24×103 | W21×111 | W27×94     | W18×119 | W14×145 | W24×94 | MOZ-OA | W12×152 | W14×132 | W18×106 | W24×84 | W21×93 | W12×136 | W14×120 | 16701 | W24×/6 | W21×83 | W14×109 | W18×86 | W12×120 | W24×68 | W16×89 | W14×99' | WZ1X/3 | W18×76 | W21×68 | W14×90 <sup>f</sup> | W24x62 | W16×77 | W10×112 |



## TABLE 23-II-H—ALLOWABLE SHEAR IN POUNDS PER FOOT FOR HORIZONTAL WOOD STRUCTURAL PANEL DIAPHRAGMS WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE<sup>1</sup>

|                                    |                  |                           |                  |                     |              | BLOCKED D      | IAPHRAGMS                                                    |                                     | UNBLOCKED D                      | IAPHRAGMS                |
|------------------------------------|------------------|---------------------------|------------------|---------------------|--------------|----------------|--------------------------------------------------------------|-------------------------------------|----------------------------------|--------------------------|
|                                    |                  |                           |                  |                     | cases), at o | continuous pa  | phragm boun<br>nel edges par<br>d at all panel (<br>5 and 6) | allel to load                       | Nails spaced 6" (<br>at supporte | 152 mm) max.<br>id edges |
|                                    |                  |                           |                  |                     |              | × 25.4         | for mm                                                       |                                     |                                  |                          |
|                                    |                  | l accompanie              | MINIMUM          | MINIMUM             | 6            | 4              | 21/22                                                        | 22                                  |                                  |                          |
|                                    |                  | MINIMUM                   | NOMINAL<br>PANEL | NOMINAL<br>WIDTH OF | Nail s       | pacing (in.) a | t other panel                                                | edges                               | Case 1 (No<br>unblocked edges    | All other                |
|                                    |                  | PENETRATION<br>IN FRAMING | THICKNES         | FRAMING<br>MEMBER   |              | 1000000        | for mm                                                       | or continuous<br>joints parallel to | (Cases 2, 3, 4,                  |                          |
|                                    | COMMON           | (inches)                  | (Inches)         | (Inches)            | 6            | 6              | 4                                                            | 3                                   | load)                            | 5 and 6)                 |
| PANEL GRADE                        | NAIL SIZE        |                           | 25.4 for mm      |                     |              |                |                                                              | 0.0146 for N/r                      |                                  |                          |
|                                    | 6d               | 11/4                      | 5/16             | 3                   | 185<br>210   | 250<br>280     | 375<br>420                                                   | 420<br>475                          | 165<br>185                       | 125<br>140               |
| Structural 1                       | 8d               | 11/2                      | 3/8              | 2 3                 | 270<br>300   | 360<br>400     | 530<br>600                                                   | 600<br>675                          | 240<br>265                       | 180<br>200               |
|                                    | 10d <sup>3</sup> | 15/8                      | 15/32            | 2 3                 | 320<br>360   | 425<br>480     | 640<br>720                                                   | 730<br>820                          | 285<br>320                       | 215<br>240               |
| 11                                 | 6d               | 11/4                      | 5/16             | 2 3                 | 170<br>190   | 225<br>250     | 335<br>380                                                   | 380<br>430                          | 150<br>170                       | 110<br>125               |
|                                    | 18.55            |                           | 3/8              | 2 3                 | 185<br>210   | 250<br>280     | 375<br>420                                                   | 420<br>475                          | 165<br>185                       | 125<br>140               |
| C-D, C-C,<br>Sheathing,            |                  |                           | 3/8              | 2 3                 | 240<br>270   | 320<br>360     | 480<br>540                                                   | 545<br>610                          | 215<br>240                       | 160<br>180               |
| and other grades<br>covered in UBC | 8d               | 11/2                      | 7/16             | 2 3                 | 255<br>285   | 340<br>380     | 505<br>570                                                   | 575<br>645                          | 230<br>255                       | 170<br>190               |
| Standard 23-2 or<br>23-3           |                  |                           | 15/32            | 2 3                 | 270<br>300   | 360<br>400     | 530<br>600                                                   | 600<br>675                          | 240<br>265                       | 180<br>200               |
|                                    | 10d <sup>3</sup> | 15/8                      | 15/32            | 2 3                 | 290<br>325   | 385<br>430     | 575<br>650                                                   | 655<br>735                          | 255<br>290                       | 190<br>215               |
|                                    |                  |                           | 19/32            | 2 3                 | 320<br>360   | 425<br>480     | 640<br>720                                                   | 730<br>820                          | 285<br>320                       | 215<br>240               |

| W10                                                            | 1                                                                                                                        | 4               | Axial        |                | Compression,              | essi           | on,          | kips                                                         |               |        | F <sub>y</sub> = 50 ksi |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|----------------|---------------------------|----------------|--------------|--------------------------------------------------------------|---------------|--------|-------------------------|
|                                                                | 0                                                                                                                        |                 |              |                | w-Shapes                  | abes           |              |                                                              |               |        |                         |
| Shape                                                          | edi                                                                                                                      |                 | 83           |                |                           | W              | W10×         |                                                              |               |        |                         |
| lb/ft                                                          | #                                                                                                                        | 55              |              | 49             | or course his             | 4              | 45           | 33                                                           |               | 69     | 33                      |
| Design                                                         | ian                                                                                                                      | $P_n/\Omega_c$  | ocPn →       | $P_n/\Omega_c$ | ф <i>с</i> Р <sub>n</sub> | $P_n/\Omega_c$ | $\phi_c P_n$ | $P_n/\Omega_c$                                               | фс <b>Р</b> " | Pn/12c |                         |
| 3                                                              | 20                                                                                                                       | ASD             | LRFD         | ASD            | LRFD                      | ASD            | LRFD         | ASD                                                          | LRFD          | ASD    | 2                       |
|                                                                | 0                                                                                                                        | 473             | 711          | 431            | 648                       | 398            | 969          | 344                                                          | 517           | 291    |                         |
| ,                                                              | 9                                                                                                                        | 446             | 671          | 407            | 611                       | 363            | 545          | 313                                                          | 470           | 263    |                         |
| u' ر)                                                          | ۲.                                                                                                                       | 437             | 657          | 398            | 598                       | 350            | 527          | 302                                                          | 454           | 253    |                         |
| oiti                                                           | œ (                                                                                                                      | 427             | 642          | 388            | 584                       | 337            | 207          | 230                                                          | 436           | 243    |                         |
| gyra                                                           | e 5                                                                                                                      | 403             | 605          | 366            | 250                       | 307            | 485          | 263                                                          | 396           | 220    | 330                     |
| ĵ0                                                             | Ŧ                                                                                                                        | 380             | 585          | 354            | 532                       | 291            | 437          | 549                                                          | 374           | 202    | 311                     |
| snib                                                           | 12                                                                                                                       | 375             | 564          | 341            | 512                       | 274            | 411          | 234                                                          | 352           | 194    |                         |
| 130                                                            | 13                                                                                                                       | 361             | 545          | 327            | 492                       | 256            | 385          | 219                                                          | 329           | 181    |                         |
| tssə                                                           | <b>4</b> £                                                                                                               | 345             | 519          | 313            | 471                       | 239            | 333          | 203                                                          | 306           | 8 5    | 253                     |
| of                                                             | 5 4                                                                                                                      | 314             | 471          | 284            | 427                       | 200            | 302          | 173                                                          | 260           | 142    | 214                     |
| 1090                                                           | 1 2                                                                                                                      | 297             | 447          | 269            | 404                       | 188            | 282          | 158                                                          | 238           | 138    |                         |
| dsə.                                                           | 18                                                                                                                       | 281             | 422          | 254            | 382                       | 171            | 257          | 144                                                          | 217           | 1117   |                         |
| ı dtiv                                                         | £ 6                                                                                                                      | 265             | 398          | 239            | 337                       | 155            | 234          | 130                                                          | 196           | 106    | 159                     |
| w ((                                                           | 3 8                                                                                                                      | 217             | 2007         | 104            | 200                       | 116            | 17.4         | 07.0                                                         | 146           | 70.07  |                         |
| u) 7.                                                          | 2 2                                                                                                                      | 188             | 32/          | 8 8            | 253                       | 97.4           | 146          | 81.7                                                         | 123           | 66.2   | - 0;                    |
| y 'ı                                                           | 56                                                                                                                       | 160             | 240          | 143            | 216                       | 83.0           | 125          | 9.69                                                         | 105           | 56.4   | - ∞                     |
| дбиа                                                           | 8 8                                                                                                                      | 138             | 207          | 124            | 186                       | 71.5           | 108          | 60.0                                                         | 90.2          | 48.7   | 73.1                    |
| ) ə <i>i</i>                                                   | 3 8                                                                                                                      | 2 4             | 2 5          | 2 5            | 707                       | 06.30          | 200          | 200                                                          | 0.00          | 1 6    | , u                     |
| vita                                                           | 2 2                                                                                                                      | 93.5            | 129          | 83.0           | 126                       | 54.8           | 82.3         | 46.0                                                         | 69.1          | 3/.3   | 26.0                    |
| Effe                                                           | 8                                                                                                                        | 83.4            | 125          | 74.8           | 112                       |                |              | A SA                                                         |               |        | 100                     |
|                                                                | 88                                                                                                                       | 74.8            | 112          | 67.2           | 101                       |                |              |                                                              |               | 36     |                         |
|                                                                | 2                                                                                                                        | 2               | 2            | 250            | Dronortioe                | diec           |              |                                                              |               |        |                         |
| -                                                              |                                                                                                                          | , 00            | , ,          | * 00           | , ,                       | 010            | 000          | 777                                                          | ,             | 4      | Ľ                       |
| Pwo, Kips                                                      |                                                                                                                          | 123             | 18.5         | 11.3           | 12.0                      | 117            | 17.5         | 10.5                                                         | 15.8          | 9.67   | 0 -                     |
| Pwb, kips                                                      |                                                                                                                          | 112             | 168          | 86.6           | 130                       | 94.2           | 142          | 68.7                                                         | 103           | 53.7   | 80.7                    |
| P <sub>fb</sub> , kips                                         |                                                                                                                          | -               | 106          |                | 88.2                      | 500            | 108          | (direct)                                                     | 79.0          |        | 2                       |
| <i>L</i> <sub>0</sub> ,π<br><i>L</i> ,π                        |                                                                                                                          | e               | 9.04<br>33.6 | e              | 8.97<br>31.6              | 7              | 7.10         | 24                                                           | 6.99          | 2      | 6.85                    |
| Ag, in. <sup>2</sup>                                           |                                                                                                                          |                 | 15.8         | -              | 14.4                      | -              | 13.3         | 1                                                            | 11.5          |        | 9.71                    |
| /x, in. <sup>4</sup>                                           |                                                                                                                          | 303             | 0            | 272            | 2.5                       | 248            | φ.           | 209                                                          |               | 171    | - 6                     |
| ا ا ا                                                          |                                                                                                                          | 2               | 2.56         | ח              | 2.54                      | D              | 2.01         | 4                                                            | 1.98          | 0      | 1.94                    |
| rxlry                                                          |                                                                                                                          |                 | 1.71         | 3070           | 1.71                      |                | 2.15         | CQ.                                                          | 2.16          |        | 2.16                    |
| $P_{\text{ev}}(\text{KL})^2/$<br>$P_{\text{ev}}(\text{KL})^2/$ | Pex(KL) <sup>2</sup> /10 <sup>4</sup> , k-in. <sup>2</sup><br>Pey(KL) <sup>2</sup> /10 <sup>4</sup> , k-in. <sup>2</sup> | 8670            | 00           | 2670           | 00                        | 7100           | 0 0          | 5980<br>1290                                                 |               | 1050   | 00                      |
| ASD                                                            | 0                                                                                                                        |                 | 6            | Note: Hear     | vv line indic             | cates KL/r.    | equal to o   | Note: Heavy line indicates KL/r equal to or greater than 200 | in 200.       |        | 4                       |
|                                                                |                                                                                                                          |                 |              |                |                           |                |              |                                                              |               |        |                         |
| $\Omega_c = 1.67$                                              | 1.67                                                                                                                     | $\phi_c = 0.90$ | 06 L         |                |                           |                |              |                                                              |               |        |                         |

<sup>&</sup>lt;sup>1</sup>These values are for short-time loads due to wind or earthquake and must be reduced 25 percent for normal loading. Space nails 12 inches (305 mm) on center along intermediate framing members.

Allowable shear values for nails in framing members of other species set forth in Division III, Part III, shall be calculated for all other grades by multiplying the shear capacities for nails in Structural 1 by the following factors: 0.82 for species with specific gravity greater than or equal to 0.42 but less than 0.49, and 0.65 for species with a specific gravity less than 0.42.

<sup>2</sup>Framing at adjoining panel edges shall be 3-inch (76 mm) nominal or wider and nails shall be staggered where nails are spaced 2 inches (51 mm) or 2<sup>1</sup>/<sub>2</sub> inches (64 mm) on center.

<sup>3</sup>Framing at adjoining panel edges shall be 3-inch (76 mm) nominal or wider and nails shall be staggered where 10d nails having penetration into framing of more than 1<sup>3</sup>/<sub>8</sub> inches (41 mm) are spaced 3 inches (76 mm) or less on center.