Applied Architectural Structures STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631 **D**R. ANNE NICHOLS **F**ALL 2012

plates and grids

Plates & Grids 1 Lecture 8

Applied Architectural Structures ARCH 631

F2009abn

Term Project

Plates & Grids 2 Lecture 7

Lecture 7

Architectural Structures III ARCH 631

F2007abr

Plates, Slabs & Grids

- plates horizontal plane, rigid
- slabs thin, flat, rigid
 - extremely common in concrete
- grids crossed beams
- see
 - bending
 - shear

Plates & Grids 2 Lecture 7

Architectural Structures III ARCH 631

F2007abn

Plates, Slabs & Grids

• types & spanning direction

Plates, Slabs & Grids

Plates, Slabs & Grids

loads & behavior

- comparison with beams

Plate Structures

http://nisee.berkeley.edu/godden

Plates & Grids 6 Lecture 7 Architectural Structures III ARCH 631

F2007abn

Plates, Slabs & Grids

- compatibility
 - deflections same, even with stiffer side
 - stiffness \propto to $\frac{EI}{L}$
 - twisting causes torsional stresses
- supports
 - at points
 - flexible
 - continuous

SECTION

EX SCIENCE

Figure 8.47: The deformation of a beam grid due to an applied point load.

Plates & Grids 7 Lecture 7 Architectural Structures III ARCH 631

One-Way Plates

- with uniform loads
 - like "wide" beams
 - moment / unit width
 - uniform curvature
- with point loads
 - resisted by stiffness of adjacent strips
 - more curvature in middle

Moment Redistribution

- total moment for ¹/₂ plate
 - value from basic equilibrium
 - because of curvature, it isn't uniform at support
 - redistribution
 - bigger with big curvature
 - smaller with small curvature

ctual reaction istribution	1	T	1	>
(IT)	V	**	S	9
R.	2	P	/	/
~~~	<i>g</i>	V	5)	
Actual in	ternal	Mtotal	= Pa ₁	4
moment dis	stributi	on		

Plates & Grids 9 Lecture 7

Architectural Structures III ARCH 631

#### Moment Redistribution

· continuous slabs & beams with uniform loading

Architectural Structures III

ARCH 631

- joints similar to fixed ends, but can rotate
- change in moment to center =  $wL^2$ 8  $-M_{max}$  for simply supported beam



Plates & Grids 10 Lecture 7

Plates & Grids 8

Lecture 7

Architectural Structures III ARCH 631

F2007abn

# Moment Distribution Method (a)

no load



http://nisee.berkeley.edu/godden

Plates & Grids 11

Lecture 7

Architectural Structures III ARCH 631

#### Moment Distribution Method (b)

#### · add load



Plates & Grids	12
Lecture 7	

Architectural Structures III ARCH 631

## Moment Distribution Method (d)

• release joint 3



#### Plates & Grids 14 Lecture 7

Architectural Structures III ARCH 631 F2007abn

F2007abn

#### Moment Distribution Method (c)

• release joint 2



Plates & Grids 13 Lecture 7 Architectural Structures III ARCH 631 F2007abn

#### Moment Distribution Method (e)

• exposure of final shape after cycles over initial shape



http://nisee.berkeley.edu/godden

Plates & Grids 15 Lecture 7 Architectural Structures III ARCH 631

#### **Ribbed Plates**



Plates & Grids 16 Lecture 7

Architectural Structures III ARCH 631

#### **Ribbed Plates**

- design them as T-beams
  - flange compression
  - stem compression
- "effective" flange width





Walter P. Moore & Assoc.

F2007abn



Plates & Grids 18 Lecture 7 Architectural Structures III ARCH 631 F2007abn

## **Ribbed Plates**

- typical in reinforced concrete
- pans can be standard or wide



6'-4" MODULE

10" Ribs @ 6'-4" Module Single 66" form or two 30" Forms + Cover

Figure 5 – Typical Wide-Module Joist Layout

Plates & Grids 17 Lecture 7 Architectural Structures III ARCH 631 F2007abn

#### Plate Structures

slabs & columns



Plates & Grids 19 Lecture 7 Architectural Structures III ARCH 631

#### Two-Way Plates

- support conditions
  - columns
  - flexible (beams)
  - simple
  - continuous



F2007abn



Plates & Grids 20 Lecture 7

# Two-Way Plates

- simply supported
  - maximum curvature at midpoint of plate

ARCH 631



Plates & Grids 22 Lecture 7 Architectural Structures III ARCH 631 F2007abn

## Two-Way Plates

- supported by columns
  - $-M_{max}$  at midspan of edges

![](_page_5_Figure_20.jpeg)

![](_page_5_Figure_21.jpeg)

Plates & Grids 21 Lecture 7

Architectural Structures III ARCH 631 F2007abn

#### Two-Way Plates

- beam vs. wall supports
  - stiffer supports, thinner slab

![](_page_5_Figure_28.jpeg)

Plates & Grids 23 Lecture 7 Architectural Structures III ARCH 631

#### Two-Way Plates

- bay proportions
  - shorter side has bigger  $\frac{EI}{I}$

L

- ratio of longer side to shorter side > 1.5
  - acts like <u>one-way plate</u>

![](_page_6_Picture_6.jpeg)

```
Plates & Grids 24
Lecture 7
```

Architectural Structures III ARCH 631 F2007abn

#### Two-Way Plates

• other constraint conditions

![](_page_6_Picture_11.jpeg)

#### Two-Way Plates

 moments found Side Bending Moments Ratio  $M_a = C_a wa^2$  $M_{\rm b} = C_{\rm b} w b^2$ from tables or a/b C. Cb handbook Simply supported 1.0 +0.0479 +0.0479 on all four sides solutions 2.0 +0.0116+0.1017a - depend on Fixed edges on 1.0 +0.0231 +0.0231support all four sides -0.0513-0.0513 conditions 2.0 +0.0039 +0.0412 -0.0143-0.0829Free corner 1.0 +0.027 +0.027(corner balcony) -0.050-0.050а b Plates & Grids 25 Architectural Structures III F2007abr Lecture 7 ARCH 631

## Design Considerations

- minimize bending (& depth)
- support conditions effective
  - continuous edge support preferred
  - fixed more than simple
- continuous surface

![](_page_6_Picture_20.jpeg)

Plates & Grids 27 Lecture 7 Architectural Structures III ARCH 631

# Design Considerations (cont'd)overhangs reverse curvature

- bay proportions
   < 1:1.5</li>
- load type
  - surface or point
- span range

  rigid plates: 15'-60'

![](_page_7_Figure_5.jpeg)

Plates & Grids 28 Lecture 7

# Reinforced Concrete Design

- flat plate
  - 5"-10" thick
  - simple formwork
- lower story heights
- flat slab
  - same as plate
  - $-2\frac{1}{4}"-8"$  drop panels

![](_page_7_Picture_16.jpeg)

Plates & Grids 30 Lecture 7 Architectural Structures III ARCH 631

F2007abn

# Reinforced Concrete Design

- economical & common
- resist lateral loads

![](_page_7_Figure_24.jpeg)

# Reinforced Concrete Design

- two-way joist
  - "waffle slab"
  - 3"-5" slab
  - 8"-24" stems
  - 6"-8" webs
- beam supported slab
  - 5"-10" slabs
  - taller story heights

![](_page_7_Picture_34.jpeg)

![](_page_7_Figure_35.jpeg)

Plates & Grids 31 Lecture 7

![](_page_8_Figure_0.jpeg)

## Reinforced Concrete Design

![](_page_8_Figure_2.jpeg)

Plates & Grids 34 Lecture 7 Architectural Structures III ARCH 631

F2007abn

#### Reinforced Concrete Design

- one-way slabs (wide beam design)
  - approximate analysis for moment & shear coefficients
  - two or more spans
  - ~ same lengths
  - $-w_u$  from combos

![](_page_8_Figure_12.jpeg)

- uniform loads with  $L/D \le 3$
- $-\ell_n$  is clear span (+M) or average of adjacent clear spans (-M)

Plates & Grids 33 Lecture 7 Architectural Structures III ARCH 631 F2007abr

#### Reinforced Concrete Design

- two-way slabs Direct Design Method
  - 3 or more spans each way
  - uniform loads with  $L/D \le 3$
  - rectangular panels with long/short span ≤ 2
  - successive spans
     can't differ > longer/3
  - column offset no more than 10% span

![](_page_8_Figure_25.jpeg)

Plates & Grids 35 Lecture 7 Applied Architectural Structures ARCH 631

#### Reinforced Concrete Design

	Ľ1	<u>_</u>			<u> </u>	
	End S	pan 📙	Inter	or Span	Дſ	
	0 0				0	
			End Spar	1	Interior Span	
Span ratio	Slab Moments	1 Exterior Negative	2 Positive	3 First Interior Negative	4 Positive	5 Interior Negative
શ્વ/લ	Total Moment	0.16 Mo	0.57 Mo	0.70 Mo	0.35 Mo	0.65 Mc
0.5	Column Strip Beam Slab	0.12 M _o 0.02 M _o	0.43 Mo 0.08 Mo	0.54 M _o 0.09 Mo	0.27 M _o 0.05 M _o	0.50 M _c 0.09 M _c
	Middle Strip	0.02 M _o	0.06 Mo	0.07 M _o	0.03 Mo	0.06 M _c
1.0	Column Strip Beam Slab	0.10 M _o 0.02 M _o	0.37 M _O 0.06 M _O	0.45 M _o 0.08 M _o	0.22 M ₀ 0.04 M ₀	0.42 M _c 0.07 M _c
	Middle Strip	0.04 Mo	0.14 Mo	0.17 Mo	0.09 M _o	0.16 M
2.0	Column Strip Beam Slab	0.06 M _o 0.01 M _o	0.22 M _o 0.04 M _o	0.27 M _o 0.05 M _o	0.14 M _o 0.02 M _o	0.25 M _c 0.04 M _c
	Middle Strip	0.09 Mo	0.31 Mo	0.38 Mo	0.19 Mo	0.36 M

Notes: (1) Beams and slab satisfy stiffness criteria:  $\alpha_1 \beta_2 \beta_1 \ge 1.0$  and  $\beta_1 \ge 2.5$ (2) Interpolate between values shown for different 1/2/11 ratios. (3) All negative moments are at face of support.

(4) Concentrated loads applied directly to beams must be accounted for separately.

Plates & Grids 36 Lecture 7

Architectural Structures III ARCH 631

Table 4-6 Two-Way Beam-Supported Slab

#### Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

![](_page_9_Picture_11.jpeg)

![](_page_9_Picture_12.jpeg)

Plates & Grids 37 Lecture 7

F2007abn

Architectural Structures III ARCH 631

F2007abn

#### Shear in Concrete

- critical section at d/2 from
  - column face, column capital or drop panel

![](_page_9_Figure_19.jpeg)

#### Shear in Concrete

at columns with waffle slabs

![](_page_9_Picture_22.jpeg)

ARCH 631

Plates & Grids 39 Lecture 7

F2007abn

# **Openings in Slabs**

- · careful placement of holes
- shear strength reduced
- bending & deflection can increase

![](_page_10_Figure_4.jpeg)

Plates & Grids 40 Lecture 7

# Space "Frame" Behavior

- shear at columns
- support conditions still important
  - point supports not optimal
- fabrication/construction can dominate design

![](_page_10_Figure_11.jpeg)

Plates & Grids 42 Lecture 7 Architectural Structures III ARCH 631 F2007abn

## Space "Frame" Behavior

- · handle uniformly distributed loads well
- · bending moment
  - tension & compression
     "couple" with depth
  - member sizes can vary, but difficult

![](_page_10_Picture_20.jpeg)

Plates & Grids 41		
Lecture 7		

Architectural Structures III ARCH 631 F2007abr

# Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

![](_page_10_Picture_27.jpeg)

![](_page_10_Picture_28.jpeg)

![](_page_10_Picture_29.jpeg)

![](_page_10_Figure_30.jpeg)

![](_page_10_Figure_31.jpeg)

![](_page_10_Figure_32.jpeg)

![](_page_10_Figure_33.jpeg)

Plates & Grids 43 Lecture 7

Architectural Structures III ARCH 631

F2007abn

#### Folded Plates

- common for roofs
- edges need stiffening

![](_page_11_Picture_3.jpeg)

Plates & Grids 44 Lecture 7

Architectural Structures III ARCH 631

![](_page_11_Picture_6.jpeg)

http://nisee.berkeley.edu/godden

F2007abn

#### Folded Plates

![](_page_11_Picture_9.jpeg)

- Assembly Hall, University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Plates & Grids 45 Lecture 7 Architectural Structures III ARCH 631