Applied Architectural Structures:

STRUCTURAL ANALYSIS AND SYSTEMS

ARCH 631 DR. Anne Nichols Fall 2012

lecture Seven

rigid frames:

Rigid Frames 1 Lecture 7 Applied Architectural Structures ARCH 631

Rigid Frames

- rigidity
- end constraints
- smaller horizontal members
- larger vertical members

Rigid Frames

- composed of linear elements
- member geometry fixed at joints
 - no relative rotation
- statically indeterminate
- see
 - shear
 - axial forces
 - bending moments

Rigid Frames 2

Architectural Structures III ARCH 631 F2008abn

Rigid Frames

• behavior

F2008abn

F2009abn

Rigid Frames

- moments get redistributed
- deflections are smaller
- effective column lengths are shorter

Rigid Frame Analysis

- members see
 - shear
 - axial force
 - bending
- V & M diagrams
 - plot on "outside"

Rigid Frames

- resists lateral loadings
- shape depends on stiffness of beams and columns
- 90° maintained

Rigid Frames 6 Lecture 7

Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are equal and opposite on next member
- "turn" member like beam
- draw V & M

Rigid Frames 7 Lecture 7 Architectural Structures III ARCH 631 F2008abn

Architectural Structures III ARCH 631 F2008abn

Analysis Methods

Analysis Methods

- · computer-based
 - matrix analysis or finite element analysis
 - equilibrium
 - support conditions
 - joint locations
 - relative stiffness of members
 - output
 - deflections
 - member forces


```
Rigid Frames 10
Lecture 7
```

Architectural Structures III ARCH 631 F2008abn

Analysis Methods

- · approximate methods
 - presume where <u>inflection points</u> occur in deformed shape
 - these points have zero moment
 - "portal method"
 - hinge is placed at the center of each girder
 - hinge is placed at the center of each column
 - shear at interior columns is twice that of exterior columns

Architectural Structures III ARCH 631

F2000ahr

Rigid Frames

- member sizes do affect behavior
- location of inflection points critical

Support Settlements

Sidesway

translation with vertical load

Multistory Frame Analysis

- cantilever method (approximate)
 - point of inflection at midspan of each beam
 - point of inflection at midheight of each column

- axial force in each column proportional to the horizontal distance of that column from the centroid of all columns in the story
- centroids are "average" locations

Rigid Frames 16 Lecture 7

Architectural Structures III ARCH 631

F2009abn

F2008abr

Multistory Frame Analysis

conditions compression faces tension faces (see Figures 5-15, 5-16) (U.S. convention) Three-hinged frame Bending moments Bending moments Shape of structure Two-hinged frame Bending moments Bending moments Shape of structure

Diagrams plotted on

Galerie des Machines

Rigid Frame Design - Types

Diagrams plotted on

Rigid Frames 17 Lecture 7

Architectural Structures III ARCH 631

(1)-

Rigid Frame Design

- materials
 - steel
 - monolithic concrete
 - laminated wood
- forms
 - small
 - single story, gabled frame, portal, hinged ...
 - large multistory

Rigid Frames 19 Lecture 7

Architectural Structures III ARCH 631

F2009abn

Rigid Frame Design

- forms
 - small

Uniform loading

- large

Rigid Frames 20 Lecture 7

Architectural Structures III ARCH 631

F2008abn

Rigid Frame Design

- staggered truss
 - rigidity
 - clear stories

Rigid Frames 21 Lecture 7

Architectural Structures III ARCH 631 F2008abr

Rigid Frame Design

- · considerations
 - need frame?
 - minimize moment (affects member size)
 - increasing stiffness
 - redistributes moments
 - Iimits deflections
 - joint rigidity
 - support types

Rigid Frame Design

- connections
 - concrete

- steel

MOMENT CONNECTION

Rigid Frames 22 Lecture 7 Architectural Structures III ARCH 631 F2008abn

Rigid Frame Design

- load combinations
 - worst case for largest moments...
 - wind direction can increase moments

Rigid Frames 24 Lecture 7 Architectural Structures III ARCH 631 F2008abn

Architectural Structures III ARCH 631

Combined Stresses

- · beam-columns have moments at end
- often due to eccentric load

Combined Stresses & Design - axial + bending $f_{max} = \frac{P}{A} + \frac{Mc}{I}$ $M = P \cdot e$ - design $f_{max} \le F_{cr} = \frac{f_{cr}}{F.S.}$

ARCH 631

Eccentric Loading

- find e such that the minimum stress = 0

$$f_{\min} = \frac{P}{A} - \frac{(Pe)c}{I} = 0$$

- area defined by e from centroid is the kern

Architectural Structures III ARCH 631 F2008abn

Biaxial Bending

Lecture 7

Stress Limit Conditions

- ASD interaction formula

Architectural Structures III ARCH 631 F2008abr

Design for Combined Stress

Tools – Multiframe4D

Tools – Multiframe4D S Frame • frame window [ZN]– define frame members •••• 用具圓困風 今而 • or pre-defined frame - select points, assign supports - select members. assign section - load window - select point or member, 10 4 5 4 4 4 4 add point or distributed loads Member 2 Rigid Frames 33 Architectural Structures III F2008abn ARCH 631 Lecture 7

Tools – Multiframe4D

- to run analys
 - Analyze mer
 - Linear
- plot
 - choose optic

🐔 Re

Stat

- DD

• results - choose options

is choose						Case Analyse Time Window Help				
10	01	10		•			Lin			Theip
						₽Ņ	LIN	ear		
nu							No	nlinear		
iu						_	Bu	kling		
							Me	dal		
							lin	ne histor	у	
							Bat	ch Anal	/sis	
				S Plo	t		1			.lt+=
D J sult	R	I I I		oad Case 1	_ D	X	r-	_	-1	
ic Case	: Load	Case 1				_				
Memb	Label	Joint	Px' kip	Vy' kip	Vz' kip					
1	Column	1	1.250	-0.168	0.000	•				
1	Column	3	-1.250	0.168	0.000					
2	Column	2	1.250	0.168	0.000	1				
2	Column	4	-1.250	-0.168	0.000					
3	X Prima	3	0.168	1.250	0.000					
3	X Prima	4	-0.168	1.250	0.000					
Member Actions 🖌 Max Ac 🔹 🕨 🕨									F2	008abn
		ARC	H 631						. 2	

Rigid Frames 34 Lecture 7