Applied Architectural Structures: Structural Analysis and Systems

arch 631 Dr. Anne Nichols Fall 2012

lecture NINETEEN

wood construction and design

Wood Construction 1 Lecture 19 F2009abn

Timber Construction

- studs, beams
- floor diaphragms & shear walls

Applied Architectural Structures

ARCH 631

Wood Construction 3 Lecture 18

Architectural Structures III ARCH 631 F2007abn

Timber Construction

- all-wood framing systems
 - studs, beams, floor diaphragms, shearwalls
 - glulam arches & frames
 - post & beams
 - trusses
- composite construction
 - masonry shear walls
 - concrete
 - steel

Architectural Structures III ARCH 631 F2007abn

Timber Construction

- glulam arches & frames
 - manufactured or custom shapes
 - glue laminated
 - bigger members

Wood Construction 4 Lecture 18

Architectural Structures III ARCH 631

Wood Construction 2 Lecture 18

Timber Construction

Wood Construction 5 Lecture 18

Architectural Structures III ARCH 631

Timber Construction by Code

- *light-frame*
 - light loads
 - -2x's
 - floor joists 2x6, 2x8, 2x10, 2x12 typical at spacings of 12", 16", 24"
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - stud or load-bearing masonry walls
 - limited to around 3 stories -fire safety

F2007abn

Timber Construction

composite construction

Wood Construction Lecture 18

Architectural Structures II ARCH 631

F2007abr

Timber Construction by Code

- heavy timber
 - member size rated for fire resistance
 - solid or built-up sections
 - beams spaced 4', 6' or 8' apart or 1, 2 or 2.5 m
 - normal spans of 10-20 ft or 3-6 m
 - timber columns or load-bearing masonry walls
 - knee-bracing common

Wood Construction 7 Lecture 18

F2007abr

Wood Construction 8 Lecture 18

Timber

- *lightweight : strength ~ like steel*
- strengths vary
 - by wood type
 - by direction
 - by "flaws"
- size varies by tree growth
- manufactured wood
 - assembles pieces
 - adhesives

F2007abn

Wood Construction 9 Lecture 18

Architectural Structures III ARCH 631

Wood Properties

• moisture

- exchanges with air easily
- excessive drying causes warping and shrinkage
- strength varies some
- temperature
 - steam
 - volatile products
 - combustion

• cell structure and density

Wood Properties

softwood

Wood Construction 10 Lecture 18 Architectural Structures III ARCH 631 F2007abn

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- creep
 - additional deformation with no additional load

Wood Construction 12 Lecture 18 Architectural Structures III ARCH 631 F2007abn

Architectural Structures III ARCH 631

Wood Properties

- strength
 - allowable design loads are given with respect to <u>direction</u> of loading

- wood is <u>weakest</u> in <u>shear</u> parallel to the grain
- wood is <u>strongest in compression</u> and <u>tension</u> parallel to grain

Lumber Grading

- light-framing
 - construction
 - standard
 - utility
- mechanical

Architectural Structures III

ARCH 631

visual

- economy
- structural light-framing
 - select structural
 - no. 1, 2, & 3

Wood Construction 13 Lecture 18 Architectural Structures III ARCH 631

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, shear walls, diaphragms

Engineered Wood

- glued-laminated timber
 - glulam

Wood Construction 14

Lecture 18

- short pieces glued together
- straight or curved
- grain direction parallel
- higher strength
- more expensive than sawn timber
- large members (up to 100 feet!)
- flexible forms

Wood Construction 16

Lecture 18

Archit

F2007abr

F2007abr

Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)

- wood fibers
 - Hardieboard: cement & wood

Wood Construction	1
Lecture 18	

Architectural Structures III ARCH 631

F2007abn

Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

Wood Construction 19 Lecture 18

Architectural Structures III

ARCH 631

F2007abn

Timber Elements

- stressed-skin elements
 - modular built-up "plates"
 - typically used for floors or roofs

F2007abn

Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs

Wood Construction 20 Lecture 18

Architectural Structures III ARCH 631

Timber Elements

- folded plates and arch panels
 - usually of plywood

Architectural Structures III ARCH 631

ARCH 631

F2007abn

tension - induced

Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs

Wood Construction 22 Lecture 18

Architectural Structures III ARCH 631

F2007abn

Timber Elements

- beams
 - joists
 - girders
 - lateral bracing
 - deflection
 - elastic
 - creep

Wood Construction 23

Lecture 18

Torsional buckling Hardwood finish flooring Plywood subfloor Joists Drywall ceiling I6" Figure 5.2 Typical joist floor construction. Architectural Structures III

Approximate Depths

Wood Design

- National Design Specification
 - National Forest Products Association

F2007abr

- ASD & LRFD (combined 2005)
- adjustment factors x tabulated stress = allowable stress
- adjustment factors terms, C with subscript
- i.e, bending:

 $f_h \leq F'_h = F_h \times (product \ of \ adjustment \ factors)$

Applied Architectural Structures ARCH 631

Adjustment Factors

- terms
 - $-C_D = load duration factor$
 - $-C_M =$ wet service factor
 - 1.0 dry ≤ 16% MC
 - $-C_F = size factor$
 - visually graded sawn lumber and round timber > 12" depth

 $C_{\rm F} = (12/d)^{\frac{1}{9}} \le 1.0$

Allowable Stresses

- design values
 - F_b: bending stress
 - $-F_t$: tensile stress strong
 - $-F_{v}$: horizontal shear stress
 - − F_{c⊥}: compression stress (perpendicular to grain)
 - *F_c*: compression stress (parallel to grain) strong
 - E: modulus of elasticity
 - $-F_p$: bearing stress (parallel to grain)

Wood Construction 26 Lecture 18 Architectural Structures III ARCH 631

Adjustment Factors

- terms
 - $-C_{fu} = flat use factor$
 - not decking
 - $-C_i = incising factor$
 - increase depth for pressure treatment
 - $-C_t = temperature factor$
 - · lose strength at high temperatures

Wood Construction 27 Lecture 18 Architectural Structures III ARCH 631 F2007abn

Wood Construction 28 Lecture 19

Adjustment Factors

- terms
 - $-C_r$ = repetitive member factor
 - 1.15 for more than 3 joists, < 24" o.c., or connected by load-distributing element
 - $-C_{H} =$ shear stress factor
 - splitting
 - $-C_{v} = volume$ factor for glulam
 - replaces C_F for timber
 - $-C_L = beam$ stability factor
 - beams without full lateral support

Wood Construction 29
Lecture 18

Architectural Structures III ARCH 631 F2007abn

Load Combinations

- design loads, take the bigger of
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D
- deflection limits
 - no load factors
 - for stiffer members:
 - Δ_T max from LL + 0.5(DL)
 - for instantaneous deflection

Wood Construction	30
Lecture 18	

Architectural Structures III ARCH 631

Deflection Limits

• relies on Uniform Building Code specs

Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240

Wood Construction 31 Lecture 18 F2007abr

Wood Beam Design - Glulam

- find M
- determine allowable stress
 - Pinus Radiata (man.) basic working stress (MPa)

Timberbond Glulam									
Moisture content	Bending parallel F'b	Compression parallel F'c	Compression perpendicular F'p	Modular elasticity E(GPa)					
			F11						
16%	13.8	12.5	12.0						
Engineering									
16%	12.1	11.7 7.3 1.8 4.0							
No.1 Framing									
16%	10.6	10.9	10.9 6.4 1.8 4.0 9.						
No.2 Framing									
16%	8.2	10.0	4.9	1.8	4.0	8.0			
Wood Construction 32 Architectural Structures III F2007a									

F2007abn

Wood Beam Design - Glulam

- calculate S_{required}
- choose width and height so that $bh^2/6 >$ S_{rea'd} evaluate *V*. Δ. *T*

Technical Information

Beam Depth

45

90

135

180

225

270

315

360

405

450

495

540

etc

F2007abn

STANDARD SIZES OF STRAIGHT GLULAM MEMBERS Beam Width (mm

- consider bracing, connections

Beam Depth (mm Nominal Premiun Utility & No. of Dimensio finish Standard Laminations finish 50 38 40 75 63 65 100 88 90 3 110 125 113 4 150 133 135 200 178 180 6 225 203 205 228 230 250 8 300 278 280 9 10 12 etc

Wood Construction 33 Lecture 18

Architectural Structures III ARCH 631

Allowable Wood Stress

$$F_{c}' = F_{c}(C_{D})(C_{M})(C_{t})(C_{F})(C_{p})$$

- where
 - F_c = compressive strength parallel to grain C_{D} = load duration factor C_M = wet service factor Z 17 $(1.0 \, dry)$ 2NP C_t = temperature factor C_{F} = size factor DIRATION OF LOAD (TIME)
 - $C_{\rm p}$ = column stability factor

Architectural Structures III

ARCH 631

F2007abr

HAR DAY IND INF. 1096 9

Wood Columns

• slenderness ratio = $L/d_{min} = L/d_1$ $-d_1 = smaller dimension$ $-l_{a}/d \leq 50 \text{ (max)}$

$$f_c = \frac{P}{A} \le F_c$$

- where F'_{c} is the allowable compressive strength parallel to the grain

Wood Construction 34 Lecture 18

Architectural Structures III ARCH 631

F2007abn

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - · higher loads
 - normal duration
 - > 10 years
- stability, C_{p}

- combination curve - tables

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

Wood Construction 36 Lecture 18

Architectural Structures III ARCH 631

F2007abr

C_p Charts

Table 14	Column	Stability	Factor	C,

			v	"C _p "	$F_c' =$	$C_p \cdot F_c^{\#} F_{Cl}$	e =	$\frac{.30 E}{(l/d)^2}$	or sawed	l posts F _C	E =	.418 E (l/d) ²	for glu-	lam posts
$\frac{F_{CE}}{F_{C}^{*}}$	Sawed	Glu-Lam		$\frac{F_{CE}}{F_{C}}$	Sawed	Glu-Lam]	$\frac{F_{CE}}{F_{C}}$	Sawed	Glu-Lam]	$\frac{F_{CE}}{F_{c}}$	Sawed	Glu-Lam
-01	C_p	C_p		-0	C_p	C_p		-0	C_p	C_p			C_p	C_p
0.00	0.000	0.000		0.40	0.360	0.377	1	0.80	0.610	0.667	1	1.20	0.750	0.822
0.01	0.010	0.010		0.41	0.367	0.386		0.81	0.614	0.672		1.22	0.755	0.826
0.02	0.020	0.020		0.42	0.375	0.394		0.82	0.619	0.678		1.24	0.760	0.831
0.03	0.030	0.030		0.43	0.383	0.403		0.83	0.623	0.683		1.26	0.764	0.836
0.04	0.040	0.040		0.44	0.390	0.411		0.84	0.628	0.688		1.28	0.769	0.840
0.05	0.049	0.050		0.45	0.398	0.420		0.85	0.632	0.693		1.30	0.773	0.844
0.06	0.059	0.060		0.46	0.405	0.428		0.86	0.637	0.698		1.32	0.777	0.848
0.07	0.069	0.069		0.47	0.412	0.436		0.87	0.641	0.703		1.34	0.781	0.852
0.08	0.079	0.079		0.48	0.419	0.444		0.88	0.645	0.708		1.36	0.785	0.855
0.09	0.088	0.089		0.49	0.427	0.453		0.89	0.649	0.713		1.38	0.789	0.859
0.10	0.098	0.099		0.50	0.434	0.461		0.90	0.653	0.718		1.40	0.793	0.862
0.11	0.107	0.109		0.51	0.441	0.469		0.91	0.658	0.722		1.42	0.796	0.865
0.12	0.117	0.118		0.52	0.448	0.477		0.92	0.661	0.727		1.44	0.800	0.868
0.13	0.126	0.128		0.53	0.454	0.484		0.93	0.665	0.731		1.46	0.803	0.871
0.14	0.136	0.138		0.54	0.461	0.492		0.94	0.669	0.735		1.48	0.807	0.874
0.15	0.145	0.147		0.55	0.468	0.500		0.95	0.673	0.740		1.50	0.810	0.877
0.16	0.154	0.157		0.56	0.474	0.508		0.96	0.677	0.744		1.52	0.813	0.879
0.17	0.164	0.167		0.57	0.481	0.515		0.97	0.680	0.748		1.54	0.816	0.882
0.18	0.173	0.176		0.58	0.487	0.523		0.98	0.684	0.752		1.56	0.819	0.884
0.19	0.182	0.186		0.59	0.494	0.530		0.99	0.688	0.756		1.58	0.822	0.887
structio	n 37					Architectui AR	ral S CH	tructur 631	es III					

Procedure

Procedure

- 2. select a section
 - if P & A known, set stress at limit
 - solve for l_e , L, or d_{min}
 - if P & l_e known,
 - find A, or d_{min}
- 3. continue from 2 until F_c satisfied

	Beam (blocking)
1	Spaced column
	blocking
ł	blocking

Eccentric Loading Stress Limit

Wood Construction 39 Lecture 18

Column with Bending Design

interaction equation

$$\left[\frac{f_c}{F'_c}\right]^2 + \frac{f_{bx}}{F'_{bx}\left[1 - \frac{f_c}{F_{cEx}}\right]} \le 1.0$$

() term – magnification factor for $P-\Delta$ F'_{hx} – allowable bending strength

F2007abn

Structural Supervision

- review changes in shop drawings!
- inspection of construction
 - verify compliance with plans
- some materials require more
 - variability of materials
 - sampling and testing

Wood Construction 42 Lecture 18

Architectural Structures III ARCH 631

F2007abr

Wood Construction 41 Lecture 18

Architectural Structures III ARCH 631

Construction Requirements - Wood

- if not treated
 - height above exposed ground
 - 18" joists, 12" girders
 - in masonry or concrete
 - provide $\frac{1}{2}$ " air space
- foundation sills must be treated
- structural members
 - must be protected from exposure to weather and water

Construction Requirements - Wood

- crawl space ventilation
- fire stops
 - walls

Lecture 18

- at ceiling and floor and every 10' along
- interconnections
 - soffits and dropped ceilings
- concealed spaces
 - access for passage of fire
 - stairways & between floors and roof

Wood Construction 43 Lecture 18

