APPLIED ARCHITECTURAL STRUCTURES:

STRUCTURAL ANALYSIS AND SYSTEMS

DR. ANNE NICHOLS **F**ALL 2012

lecture sixteen

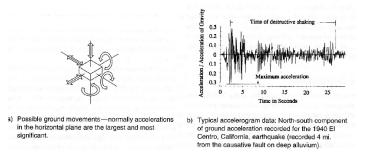
seismic design

Seismic Design 1 Lecture 17

Applied Architectural Structures ARCH 631

Earthquake Design

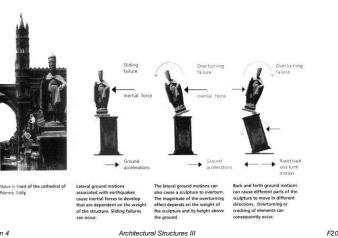
- hazard types
 - surface fault ruptures
 - ground failures
 - tsunamis (sea waves)



F2009abn

Earthquake Design

- · dynamic vs. static loading
 - amplification of static affect
 - time duration
 - acceleration & velocity


Seismic Design 2 Lecture 16

Architectural Structures III ARCH 631

F2007abr

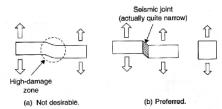
Earthquake Design

• hazard types: ground shaking

Seismic Design 4

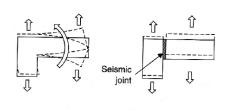
ARCH 631

F2007abn


Earthquake Design

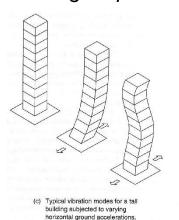
- fundamental considerations
 - building configuration
 - · symmetry with respect to mass
 - stiffness or vibration control
 - · symmetry with respect to lateral resistance mechanisms
 - member sizes, rigidity, braces, dampers
 - anchorage of parts and components
 - · seismic joints
 - "tie the building together"

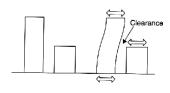
Seismic Design 5 Architectural Structures III ARCH 631


Earthquake Design

- building response
 - seismic joints
 - L. T. H shapes bad

F2007abn




Architectural Structures III F2007abn ARCH 631

Earthquake Design

building response

(a) Small separation—not desirable.

(b) Large separation—preferred.

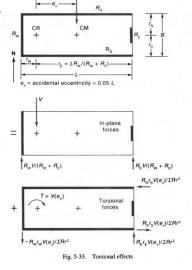
Seismic Design 6 Lecture 16

Architectural Structures III ARCH 631

F2007abn

Earthquake Design

- building response
 - center of mass


ex.:

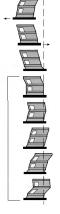
$$\bar{x} = \frac{\sum W_{NS} x}{\sum W_{NS}}$$

center of rigidity

• ex.
$$(R = 1/\delta)$$
:
$$r_E = \frac{\sum R_y x}{\sum R_y}$$

torsion (eccentricity)

Seismic Design 8 Lecture 16


Architectural Structures III

F2008abr

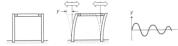
Low-Rise Response

- lateral ground movement
- drift

Seismic Design 8 Lecture 16

Architectural Structures III ARCH 631

F2007abr


F2007abr

Earthquake Design

- codes
 - purpose is to provide a simple uniform method of determining potential earthquake forces in any location with enough accuracy to ensure a safe and economical building design
 - National Earthquake Hazards Reduction Program (NEHRP)
 - evaluate structural response (spectrum) to earthquake (motion vs. time)

Frequency and Period

natural period of vibration

- avoid resonance
- hard to predict seismic period
- affected by soil
- short period
 - · high stiffness
- long period
 - low stiffness

"To ring the bell, the sexton must pull on the downswing of the bell in time with the natural frequency of the bell."

Seismic Design 9 Lecture 16

Architectural Structures III ARCH 631

F2007ahn

Earthquake Design Loads

- derived from W & amplification factors
- at base of structure:

$$V = \frac{ZICW}{R_W}$$

- *− I, importance (1.0 − 1.5)*
- C, stiffness related to period of vibration
- R_W, response modifications for building type (1.25 – 8)
- distribution per floor
 - simple vs. tall -

Seismic Design 11 Lecture 16

Architectural Structures III ARCH 631

Figure 20.9. Multistory building subjected to earthquake excitati

Earthquake-Resistant Structures

- absorb energy input from ground motion
- pins can't, rigid frames can
 - energy goes into forming plastic hinges (ductility)
 - continuous
 - steel, timber or reinforced concrete

F2007abn

- redundancy helpful
- use rigid diaphragms
- horizontal members fail before verticals

Seismic Design 13 Architectural Structures III ARCH 631

Earthquake Design

• want horizontal elements to fail before vertical elements do

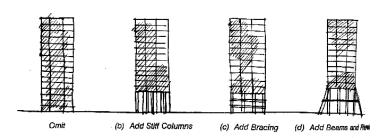


Figure 3.23 Solutions to the Soft First Story Problem

Earthquake Design

 soft first stories - problematic

Figure 3.21 Building Types with Soft First Story

on Superstructure

DEFLECTION

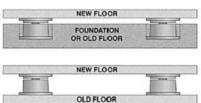
(a) Deflection of Structure with Uniform Stiffness

(b) Deflection of Structure with Rigid Superstructure

Figure 3.22 Deformation of a Building with Soft First Story

weaker than those above · usually higher

ground level story


- · reduced strength in vertical elements
- · significantly increased mass above

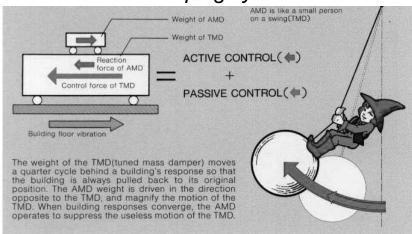
Seismic Design 13 Architectural Structures III F2007ahn Lecture 16 ARCH 631

Earthquake Design

- passive base isolation
 - low stiffness layer between foundation and structure

Seismic Design 15

Architectural Structures III


F2007abn

Earthquake Design

Seismic Design 16

Lecture 16

tuned mass damping systems

Architectural Structures III

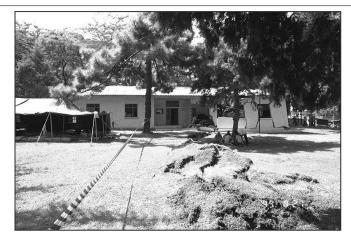
ARCH 631

Sendai Mediatheque, Japan, 2011

Earthquake Design

- dampers
- elastomer bearingsneoprene or rubber
- sliding systems

 friction pendulum systems



Seismic Design 17 Lecture 16

F2007abn

Architectural Structures III ARCH 631 F2007abn

Architectural Considerations

Video - Buildings at Risk

Seismic Design 18 Lecture 16 Architectural Structures III ARCH 631 F2007abn