
Applied Architectural Structures:

STRUCTURAL ANALYSIS AND SYSTEMS

ARCH 631 DR. ANNE NICHOLS **F**ALL 2012

structural planning

Structural Planning 1 Lecture 14

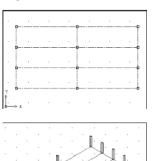
Applied Architectural Structures

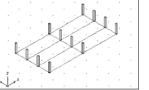
ARCH 631

F2009abn

Structural Design Sequences

- first-order design
 - structural type and organization
 - design intent
 - contextual or programmatic
- second-order
 - structural strategies
 - material choice
 - structural systems
- third-order
 - member shaping & sizing

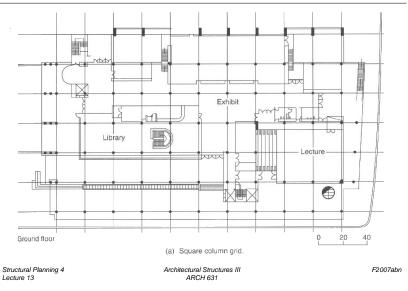

Structural Planning 2 Lecture 13


Architectural Structures III ARCH 631

F2007abn

Grids and Patterns

- often adopted early in design
 - give order
 - cellular, ex.
- vertical and horizontal
- square and rectangular
 - single-cell
 - aggregated bays

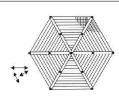


Architectural Structures III

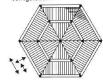
ARCH 631

F2007abn

Grids and Patterns


Systems

- total of components
- · behavior of whole
- classifications
 - one-way
 - two-way
 - tubes


Structural Planning 5

Lecture 13

- braced
- unbraced

(a) One-way radial beam-and-column system for a hexagonal or circular configuration.



(b) One-way circumferential beamand-column system plan for hexagonal or circular configuration.

F2007abn

One-Way Systems

· horizontal vs. vertical

Two-Way Systems

• spanning system less obvious

(c) Two-way flat-plate system

(without beams) for a

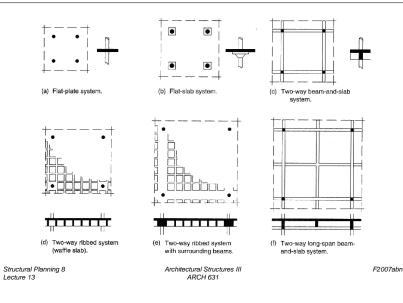
hexagonal or circular

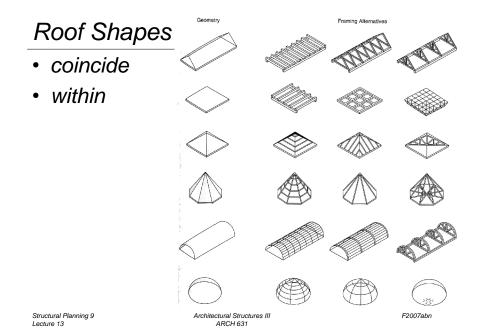
configuration.

Architectural Structures III

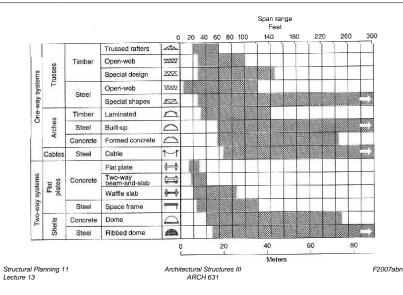
ARCH 631

- horizontal
 - plates
 - slabs
 - space frames
- vertical
 - columns
 - walls

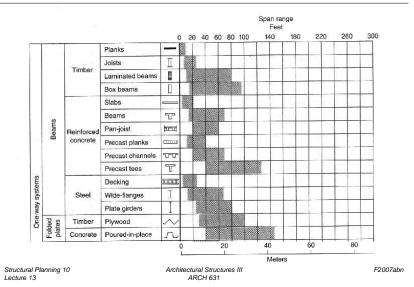

Structural Planning 7 Lecture 13 Architectural Structures III ARCH 631


F2007abn

(i) Space-frame system on


walls with cantilevers.

Two-Way Systems



Systems & Spans

Systems & Spans

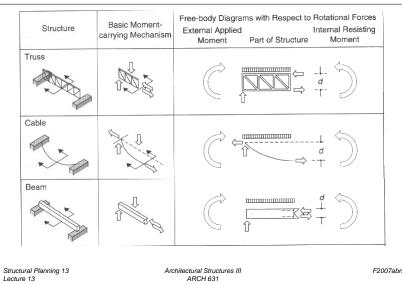
Span Lengths

- crucial in selection of system
- maximum spans on charts aren't absolute limits, but usual maximums
- increase L, increase d^2 required (ex. cantilever) $f_{b-max} =$
- deflections depend on L

Architectural Structures III

ARCH 631

Structural Planning 12 Lecture 13



WL 6

F2007abn

3

Moments in Members

Spans

- · intermediate- and low-span systems
 - 15' 40' or 5 15 m
 - more common
 - good for planar surfaces
 - lots of options
 - cost usually dictates

Structural Planning 15 Lecture 14

Architectural Structures III ARCH 631

F2009abr

Spans

- long-span structures
 - over 60' or 20 m
 - depths are large compared to span
 - usually shaped
 - trusses, arches, cables, nets, pneumatics & shells

- common for roofs
- camber
- flat systems not as efficient
- deflections can govern size

Structural Planning 14 Lecture 13 Architectural Structures III ARCH 631 F2007abr

Loading Type and Structure Type

- light uniform loads
 - surface forming elements
 - those that pick up first load dictate spacing of other elements

- heavy concentrated loads
 - member design unique
- distributed vs. concentrated structural strategies
 - large beam vs. many smaller ones

Structural Planning 16 Lecture 14 Architectural Structures III ARCH 631 F2009abn

Δ

Case

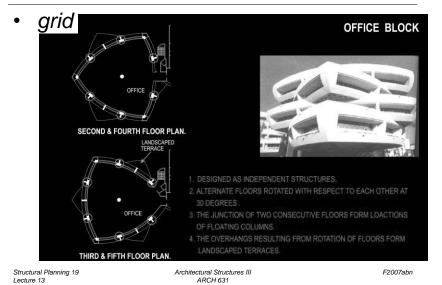
- grid
- system orientation
 - one-way or two?
- span lengths
- loading type
 - concentrated vs. distributed

Structural Planning 17 Lecture 14

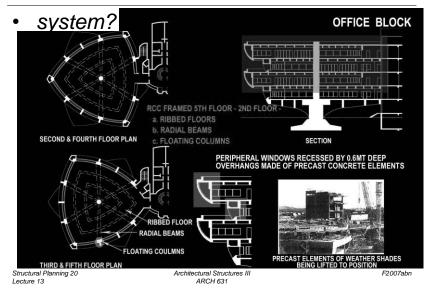
Architectural Structures III ARCH 631

F2009abr

Case

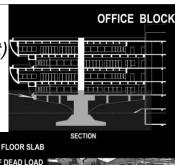

Engineering Design & Research Center

CLIENT: LOCATION: NATURE OF BUILDING: ARCHITECT: STRUCTURAL DESIGN: GENERAL CONTRACTORS: CONSTRUCTION MATERIAL: DATE OF COMMENCEMENT:	LARSEN & CHENNAI OFFICE K. S. RAN L & T LTD. L & T LTD. REINFORCED CONCRETE JULY, 1996	
DATE OF COMPLETION:	NOVEMBER, 1998	
	ENGINEERING DES LARSEN & TOUBRO	IGN & RESEARCH CENTRE- LIMITED
uctural Planning 18	Architectural Structures III	F2007abn


Lecture 13

ARCH 631

Case



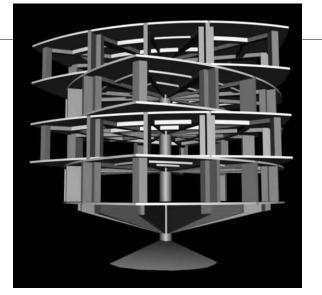
Case

Case

- span lengths
 - 30-40 m (100 130 ft)
 - 15-20 m (50 65 ft)

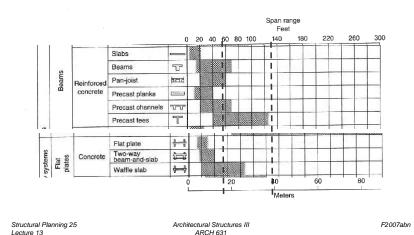
- HALF CABLES INITIALLY STRESSED

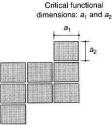
THALF GABLES INTRALLI STRE


- ONLY AFTER THE SECOND FLOOR

WERE THE REST O

DETAIL OF FIRST FLOOR SLAB PRESTRESSIN

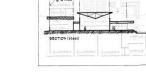

Structural Planning 21 Lecture 13 Architectural Structures III ARCH 631 F2007abn


Case

• pre-stressing & loading type

Design Issues

- critical programmatic dimensions
 - minimum clear spans for functional areas
 - determines selection of beam, or roof/ floor systems
 - vertical support elements
 - match clear span or greater

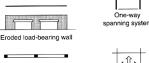


Structural Planning 23 Lecture 13 Architectural Structures III ARCH 631 F2007abn

Architectural Structures III ARCH 631 F2007abn

Design Issues

- degree of fit
 - single (1:1)


- multiple (2:1, etc.)
- any number of patterns possible
- simple patterns generally more "elegant"
- one-on-one fit
 - good for large spans
 - material selection influences short span fit
 - steel & concrete for "looser" fits

Structural Planning 2	5
Lecture 14	

Architectural Structures III ARCH 631

Spatial Implications

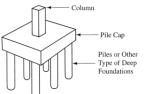
- one-directional or linear space
 - load bearing walls
 - beams & columns
 - · column shape & orientation
 - long spans
- two-way, relatively neutral space
 - flat plate
 - beams & slabs
 - space frames

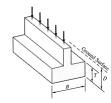
Load-bearing wall

Framed system

Structural Planning 30 Lecture 13

Architectural Structures III ARCH 631


F2007abr


One-way

F2009abr

Foundation Influence

- type may dictate fit
 - piles vs. mats vs. spread
 - capacity of soil to sustain loads
 - high capacity smaller area of bearing needing and can spread out
 - low capacity multiple contacts and big distribution areas

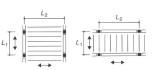
Architectural Structures III ARCH 631

F2007abr

Square Bays

- two-way systems rely on square-ness
 - peripheral wall system or columns

- columns extending 2 ways common
- for low & intermediate span ranges
- one-way systems can be used
 - don't have 4 walls
 - columns extending 1 way only

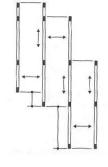

Structural Planning 31 Lecture 13

.

Structural Planning 29 Lecture 13

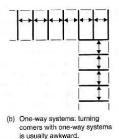
Rectangular Bays

- 1:1 to 1:1.5
- direction of joists & beams not obvious
 run comparison for material amounts
- generally:
 - with no collectors, span the short way


- lightweight joists or trusses
- with collectors, try the short way
 - same tributary load over shorter span

Structural Planning 3	2
Lecture 13	

Architectural Structures III ARCH 631 F2007abr


Slipped Units

- usually one-way systems
- · bearing walls allow unlimited slip
- columns allow slip by
 - column to column distance
 - columns can shift

Corners

- terminate system & change
- transition, rotation, or two-way system
- depends on vertical elements
- prefer constant member sizes AND spacings with steel & wood
- can use cast-in-place concrete

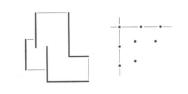
Structural Planning 33	
Lecture 13	

Architectural Structures III ARCH 631 F2007abr

Moving Supports

- location of supports can redistributed the moments
 - reduced section size
- using cantilevers & continuous beams
 - rule of thumb for simple supported beam
 - move L/5 in both ends
 - move L/3 one end

F2007abn


Structural Planning 35 Lecture 13

Architectural Structures III ARCH 631

F2007abn

Non-Uniform Grids

- irregular column placement
 - concrete & flat slabs adaptable
- regular vertical supports required for most long span systems

Structural Planning 36 Lecture 13

Architectural Structures III ARCH 631

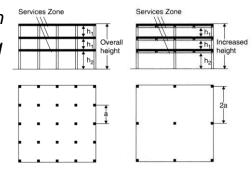
Large Spaces

ex. auditoriums, gyms, ballrooms

choices

- separate two systems completely and connect along edges
- embed in finer grid
 - high up, less load transfer
 - low more load transfer & heavy girders
- staggered truss

Structural Planning 37 Lecture 13


Architectural Structures III ARCH 631

F2007abr

F2007abr

Grid Dependency on Floor Height

- wide grid = deep beams
 - increased building height
 - heavier
 - foundation design
- codes and zoning may limit
- utilize depth for mechanical

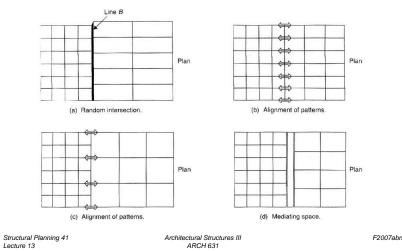
Structural Planning 34 Lecture 13

Architectural Structures III ARCH 631

F2007abr

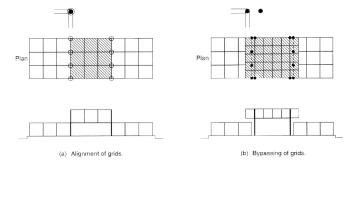
Meeting of Grids

- common to use more than one grid
- intersection important structurally
- can use different structural materials
 - need to understand their properties
 - mechanical
 - thermal


Architectural Structures III ARCH 631

F2009abn

Structural Planning 36 Lecture 14

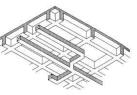

Meeting of Grids

horizontal choices

Meeting of Grids

vertical choices

Architectural Structures III


ARCH 631

Other Conditions

- circulation
- building service systems

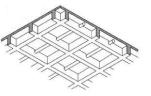
for parallel runs

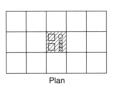
- one-way systems have space
- trusses allow for transverse penetration
- pass beneath or interstitial floors
 - · for complex or extensive services or flexibility

Structural Planning 39 Lecture 13

Architectural Structures III ARCH 631

F2007abn


Other Conditions


- poking holes for member services
 - horizontal

Structural Planning 42

Lecture 13

- · need to consider area removed, where removed, and importance to shear or bending
- vertical
 - requires framing at edges
 - · can cluster openings to eliminate a bay
- double systems

F2007abn

F2007abr

Architectural Structures III ARCH 631

Fire Safety & Structures

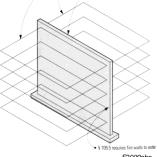
- fire safety requirements can impact structural selection
- construction types
 - light
 - residential
 - · wood-frame or unprotected metal
 - medium
 - masonry
 - heavy
 - protected steel or reinforced concrete

Structural Planning 41 Lecture 14

Architectural Structures III ARCH 631

F2009abr

http://www.nfpa.org


Fire Safety & Structures

- resistance ratings by failure type
 - transmission failure
 - fire or gasses move
 - structural failure
 - high temperatures reduce strength
 - failure when subjected to water spray
 - necessary strength
- ratings do not pertain to usefulness of structure after a fire

Structural Planning 43 Lecture 14

Fire Safety & Structures

- degree of occupancy hazards
- building heights
- maximum floor areas between fire wall divisions
 - can impact load bearing wall location

Structural Planning 42 Lecture 14

Architectural Structures III ARCH 631

F2009abn