APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS

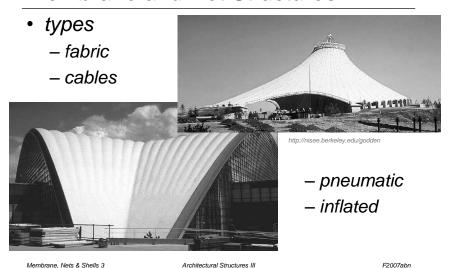
ARCH 631

DR. ANNE NICHOLS
FALL 2012

lecture thirteer

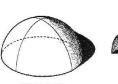
Denver Airport - Birdair.com

membrane, net & shell structures


Membrane, Nets & Shells 1

Lecture 12

Applied Architectural Structures
ARCH 631


F2009abn

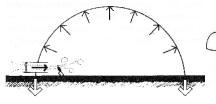
Membrane and Net Structures

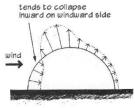
Membrane and Net Structures

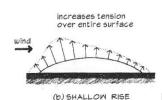
 form follows pressure or tension

DEVELOPABLE

SYNCLASTIC



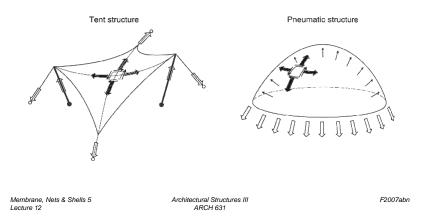



Figure 15.1: Shell shapes.

Membrane, Nets & Shells 2 Lecture 12 Architectural Structures III ARCH 631 F2007abn

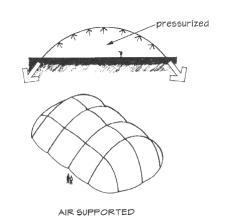
Membrane and Net Structures

- · sensitive to aerodynamic effects of wind
 - fluttering


(a) STEEP RISE

- stabilization
 - rigid supporting framework
 - prestressing of surface

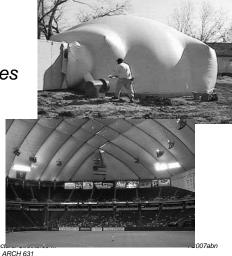
Membrane, Nets & Shells 4 Lecture 12 Architectural Structures III ARCH 631


Membrane and Net Structures

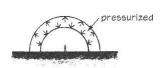
· tensile stress and tangential shear stresses occur

Air-Supported Structures


- pressure slightly higher than atmospheric
- light loads
- greater spans than air-inflated


Pneumatic Structures

- internal pressure
 - air-supported: entire volume
 - air-inflated: cavities
 - ribs
 - · dual walls



Lecture 12

Air-Inflated Structures

- higher degree of pressurization
- pressure doesn't directly balance loads
- buckling or folding results in collapse
- · flexibility in space

AIR INFLATED

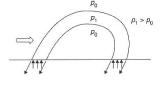
Membrane, Nets & Shells 7

Architectural Structures III ARCH 631

F2007abn

Membrane, Nets & Shells 8 Lecture 12

Architectural Structures III ARCH 631

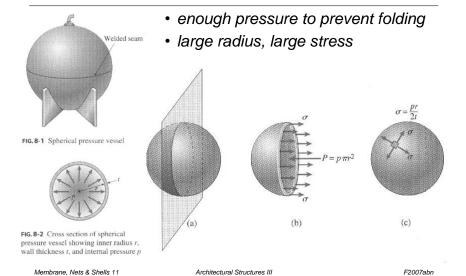

Loads & Behavior

- snow accumulation
 - shape
 - heat loss
- avoid large concentrated loads

- wind loads
 - suction
 - tension
 - "buckling"

Suction

Membrane, Nets & Shells 9

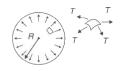

Lecture 12

Lecture 12

Architectural Structures III ARCH 631

F2007abn

Membrane Stresses



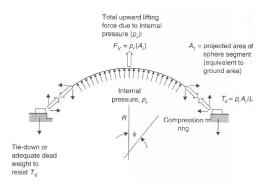
ARCH 631

Membrane Stresses

pressure is constantly applied stress

General relationship: $p_r = T_1/R_1 + T_2/R_2$ For a sphere:

- (a) Circular membrane of unit width carrying an internal pressure p_i. Tension forces in membrane:
- (b) Spherical membrane carrying an internal pressure

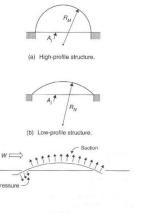

Membrane, Nets & Shells 10 Lecture 12

Architectural Structures III ARCH 631

F2007abr

Supports

- · air-supported
 - need airtight seal
 - resists uplift and thrust
 - "inverted" arch
 - containment rings




Membrane, Nets & Shells 12 Lecture 12

Architectural Structures III ARCH 631

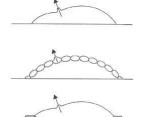
Profile Selection

- lower profile
 - higher stresses
 - lower air volume
 - can be used to avoid wind pressure effects

Membrane, Nets & Shells 13 Lecture 12

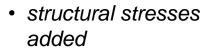
Architectural Structures II. ARCH 631

F2007abr

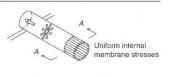

F2007abn

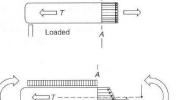
Punctures

- fracture or rip from redistribution of stresses
- air-supported
 - low pressure
 - gradual deflation
- air-inflated


Membrane, Nets & Shells 15

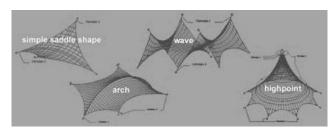
- isolated cells deflate
- design in suspension




Air-Inflated Members

 prestressed in tension

increase in tension


Membrane, Nets & Shells 14 Lecture 12

Architectural Structures III ARCH 631

F2007abr

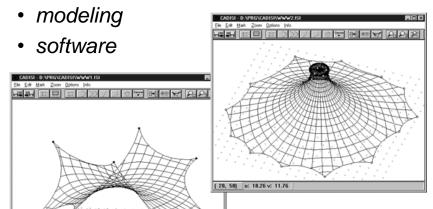
Net and Tent Structures

- low curvatures, high stress (big radius)
- avoid flat areas
- carefully place high & low points

Basic Types of Tensile Structures (© Tentech)

Membrane, Nets & Shells 16 Lecture 12

Architectural Structures III ARCH 631


Support Conditions

- compression masts
- · uplift at ground
- free edges can be stiffened with cables
- stress reduction at high points by a cable ring

Membrane, Nets & Shells 17 Lecture 12 Architectural Structures III ARCH 631 F2007abn

Form Development

Membrane, Nets & Shells 18 Lecture 12

[20, 85] u: 22.03 v: 5.76

Architectural Structures III ARCH 631 F2007abn

Materials

- strength
 - tear resistant
 - bi-directional
- durability
 - ultraviolet effects
 - creep
 - corrosion in metals

Shells

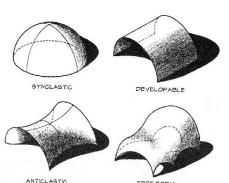
- similar to membranes, domes & vaults
- THIN
- rigid

Membrane, Nets & Shells 20

Architectural Structures III ARCH 631

Shells

Empire State Performing Arts Center, Ammann & Whiney


Lecture 12

Architectural Structures III ARCH 631

F2007abn

Shell Types

- shape classifications
 - developable:
 - · singly curved (vault)
 - synclastic
 - · doubly curved
 - · same direction
 - anticlastic:
 - · doubly curved
 - · opposite curvature
 - free form

F2007abn

Membrane, Nets & Shells 22 Lecture 12

Architectural Structures III ARCH 631

Synclastic

surface of revolutions

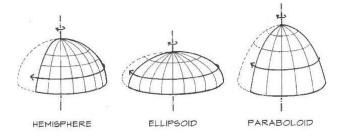
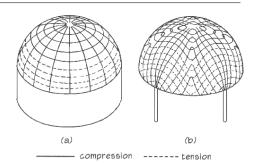



Figure 15.2: Rotational surfaces.

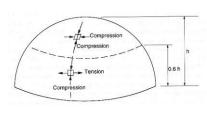
Shell Stresses

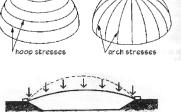
- in-plane
 - tension
 - compression
 - shear
- insignificant bending

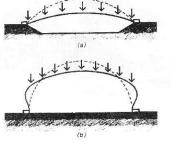
- suitable for distributed loads
- can't handle concentrated loads well

Membrane, Nets & Shells 23

Architectural Structures III ARCH 631


F2007abn


Membrane, Nets & Shells 24 Lecture 12

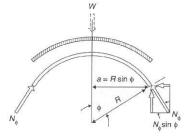

Architectural Structures III ARCH 631

Spherical Shells

- arch of revolution
- compression
- some tension
 - "bow"

Membrane, Nets & Shells 25 Lecture 12

Architectural Structures III ARCH 631

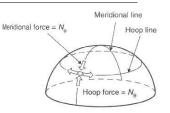

F2007abr

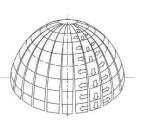
Meridional and Hoop Forces

• meridional force per unit length:

$$N_{\phi} = \frac{W}{2\pi R \sin^2 \phi}$$

• hoop force per unit length:


$$N_{\theta} = Rw \left(-\frac{1}{1 + \cos \phi} + \cos \phi \right)$$


Membrane, Nets & Shells 27 Lecture 12

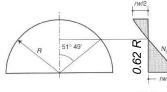
F2007abn

Forces in Spherical Shells

- similar to plates
 - two directions of forces
 - shear
 - maintain curvatures
- meridional— arch direction
- hoop radial direction
 - can see tension
- holes redistribute stresses
 - edges need reinforcement

Membrane, Nets & Shells 26 Lecture 12

Architectural Structures III


F2007abn

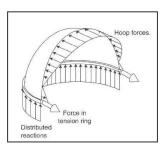
Distribution and Concentrated Forces

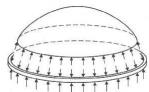
size distributions

$$cos(51^{\circ}49')R = 0.62R$$

(b) Hoop forces.

 concentrated force causes $N_{\phi} \rightarrow \infty$

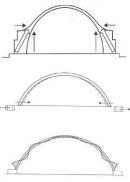



Membrane, Nets & Shells 28 Lecture 12

Architectural Structures III

Support Conditions

- absorb horizontal thrust
 - tension ring
 - being pushed out
 - need to be continuous
 - can be used as foundation
- top (crown) rings
 - in compression


Membrane, Nets & Shells 29 Lecture 12

Architectural Structures II. ARCH 631

F2007abr

Support Conditions

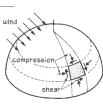
- buttresses
- edge restraint effects
 - deformations different
 - fixed edges
 - bending stress
 - · deep section
 - pinned edges
 - · still induces bending
 - post-tensioning helps stiffen

Membrane, Nets & Shells 30 Lecture 12

Architectural Structures III ARCH 631

F2007abr

Buckling & Lateral Loading


- instability
 - compression
 - moment of inertia
 - low stress levels
- local
- snap-through
- lateral loading
 - shear

(a) Snap-through buckling.

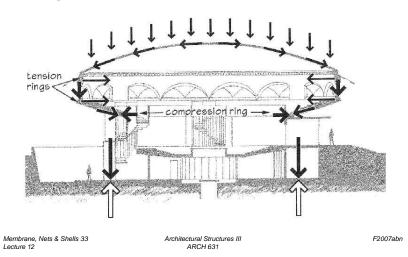
(b) Local buckling.

F2007abn

Annunciation Greek Orthodox Church

• Wright, 1956

Membrane Nets & Shells 32 Lecture 12

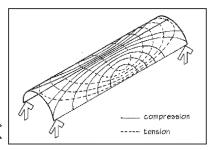

Architectural Structures III ARCH 631

http://www.bluffton.edu

F2007ahn

Annunciation Greek Orthodox Church

• Wright, 1956



Cylindrical Shells

- · can resist tension
- shape adds "depth"

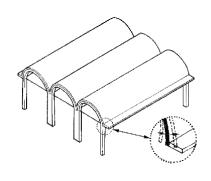
- TRANSVERSE FOLDING
- FREE FORM
- not vaults
- barrel shells

Membrane, Nets & Shells 34 Lecture 12

Architectural Structures III

F2007abn

Kimball Museum, Kahn 1972

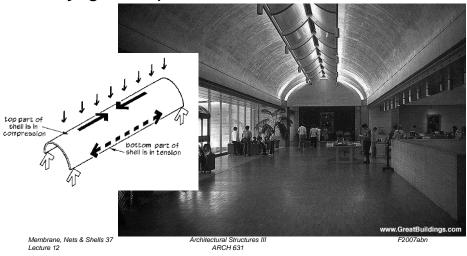

Membrane, Nets & Shells 35 Lecture 12

Architectural Structures III ARCH 631

F2007abn

Kimball Museum, Kahn 1972

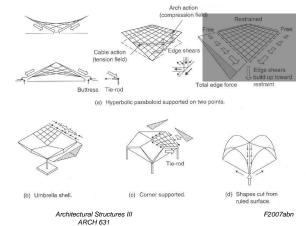
outer shell edges


Membrane, Nets & Shells 36 Lecture 12

Architectural Structures III ARCH 631

F2007abn

Kimball Museum, Kahn 1972


skylights at peak

Anticlastic Shell Behavior

- edge conditions offer restraint
 - tie rods useful
 - shears

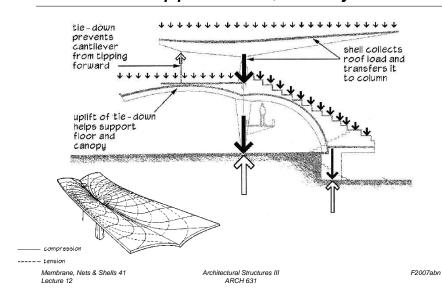
Membrane, Nets & Shells 39

Anticlastic Shells (Hyperbolic Paraboloid)

- saddle or "ruled" shapes
- surface generated with straight lines

- tension follows "cable drape"
- compression follows "arch"

Membrane, Nets & Shells 38 Lecture 12 Architectural Structures III ARCH 631 F2007abn


Zarzuela Hippodrome, Torroja 1935

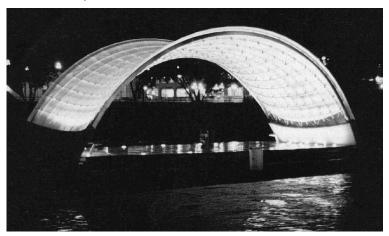
http://www.arch.mcgill.ca

Membrane, Nets & Shells 40 Lecture 12 Architectural Structures III ARCH 631

Zarzuela Hippodrome, Torroja 1935

Heilmajer Memorial Bandstand

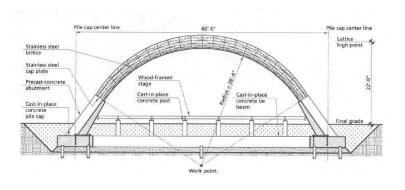
· Kramer, 2002


Lecture 12

Membrane, Nets & Shells 43 Architectural Structures III F2007abn ARCH 631

Heilmajer Memorial Bandstand

• Kramer, 2002


Membrane, Nets & Shells 42 Lecture 12

Architectural Structures III ARCH 631

F2007abn

Heilmajer Memorial Bandstand

• Kramer, 2002

Membrane, Nets & Shells 44 Lecture 12

Architectural Structures III ARCH 631