ARCH 631. Assignment \#8

Date: 10/16/12, due 11/8/12
Worth 25 pts.

Problems:

1. A 45 ft x 90 ft structure has the openings and shear walls shown in Figure 14.7 on page 534 (with no rear shear walls). The roof diaphragm is 13 ft from the base, but this structure has a parapet wall extending 3 ft past the roof level where the loads are transmitted. Determine the shear forces in the shear walls, R_{1}, R_{2} and R_{3}, when the design wind load is

(a) Basic structure with fully rigid roof plane (diaphragm) and three shear walls $23 \mathrm{lb} / \mathrm{ft}^{2}$.

Answer: $R_{1}=R_{2}=9,832.5 \mathrm{lb}, R_{3}=9,832.5 \mathrm{lb}$
2. For the shear wall on the long side $\left(R_{3}\right)$ of the building in Problem 1, determine the overturning moment.

Answer: $M_{0}=127,822 \mathrm{lb-ft}$
3. If the shear wall on the long side $\left(R_{3}\right)$ of the building in Problem 1 is removed, the diaphragm can be considered to behave like a deep truss with a distributed load on it. Determine the maximum force in the top and bottom "chords" from the maximum moment.

Answer: $T=C=4,916 \mathrm{lb}$
4. You are designing a building in seismic zone 3 which is a large auditorium (>300 occupancy) $(\mathrm{I}=1.25) . \mathrm{Z}=0.30, \mathrm{C}=1.25 \mathrm{~S} / \mathrm{T}^{2 / 3}, \mathrm{~S}=1.2, \mathrm{~T}=0.5, \mathrm{R}_{\mathrm{W}}=6$, and the total dead load $=85,000$ lbs. What is the base shear?

Answer: $V=12.6 \mathrm{kips}$
5. Complete text problem 16.2 on page 588.
16.2 With respect to shear stresses alone, what is the required diameter for a bolt in single shear that transfers a shear force of 6000 lb between two plates? Assume that $F_{v}=14,000 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$ Answer: $3 / 4$-in. diameter.
6. Complete text problem 16.3 on page 588.
16.3 How many inches of $1 / 8$-in. weld are necessary to transfer a shear force of 6000 lb from one plate to another? Assume that $F_{v}=13,600 \mathrm{lb} / \mathrm{in.}^{2}$

Answer: 5 in.
7. Complete text problem 16.4 on page 588. Note: Assume $F_{v}=14,000$ psi. Also, the numerical answer provided is not correct. It should be 5,093 lb/in ${ }^{2}$.
16.4 Will a bolt $1 / 2 \mathrm{in}$. in diameter used in double shear carry a force of 2000 lb ? What is the shear stress present?

Answer: Yes. $f_{v}=5128 \mathrm{lb} / \mathrm{in} .^{2}$
8. What is the capacity of the connection shown? All connection material is ASTM A36 ($\mathrm{F}_{\mathrm{y}}=36 \mathrm{ksi}$, $\left.\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}\right)$, while the beams are A992 ($\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$, $\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$. Assume that the connection angles are adequate with standard holes and 3 in . spacing, and that the coping distances $\left(L_{e v} \& L_{e h}\right)$ are sufficiently large.

Partial answer: ASD possible limits are 154, 212, 166.3, or 389.3 kips; or LRFD possible limits are 232, 248.6, 389.3 or 582 kips, so ...

W24 $\times 76$
(WEB THICKNESS
$\approx 0.440^{\prime \prime}$)

2 ANGLES
$6 \times 4 \times 1 / 2$ WITH $5-10 \emptyset$
A $325-N \quad$ BOLTS EACH LEG

W27 $\times 102$
(WEB THICKNESS $=0.515^{\prime \prime}$)

		5	5	ก̃\％\％	흐군	人̀	¢	윤추	京号	¢Rに边	－－m	¢ ${ }_{\text {¢ }}^{\text {in }}$		幖	¢0．0									
$\frac{0}{0}$			䫆安	¢		－	－${ }_{0}^{\circ}$	¢\％	®\％	\％ib	－	¢	กั\％	¢\％	융ㅇㅇㅇ									
		\％	50	N ${ }_{\text {N }}$	示	\％	らすへ	miz	菏	戓管	\mathfrak{b}	ioio	¢\％	示	\％									
		d	Et	\％	$\left\|\begin{array}{l\|l\|} \hline 0 \\ 080 \\ 080 \end{array}\right\|$	产令	\％®\％		0		¢ ${ }_{\text {m }}^{\text {N－}}$	钲皆	oi	$\stackrel{\circ}{\circ} \mathrm{O}$	風									
			5		$\left\lvert\, \begin{gathered} \infty \\ \infty \\ \infty \\ \infty \end{gathered}\right.$	Nix ix	$0 \begin{gathered} \infty \\ \infty \\ \infty \\ \infty \end{gathered}$	$\mid \stackrel{\leftrightarrow}{0} \underset{\sim}{0}$	0	Non			\％	$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$	自号									
	$\stackrel{1}{2}$		永	$\begin{gathered} \frac{m}{\sigma} \\ \bar{y} \\ \hline \end{gathered}$	Nin io	$\begin{aligned} & \infty \\ & \dot{\infty} \dot{0} \\ & \hline \end{aligned}$	Nie io	लि묵	Nin		Nom	－	尔が	กั®\％	\％				은 은 응 응					
			品	䋻	3	¢	¢		\％		N－	¢		N－M	¢									
			\％	－	¢ ¢ ¢ ¢ ¢	No.	毞守	న్న్లై		※ֻ\％	$\mathfrak{l n}$	＋${ }_{\sim}^{\infty}$	¢00	等め	लiٌ									
∞		产		：8\％	용 8	\％ 8	\％¢ ¢	® ¢ ¢	\％¢ ¢	\％¢ ¢	\％\％	®®	¢8 ¢	\％\square_{\circ}^{8}	¢8	豗も゙き		3 家						
π				$\begin{aligned} & \text { ®. } \\ & \text { స̈ } \end{aligned}$	$\stackrel{\vdots}{\check{m}}$	$\begin{aligned} & \stackrel{0}{0} \\ & \underset{\sim}{m} \end{aligned}$	$\underset{\infty}{\dot{E}}$	$\begin{aligned} & \stackrel{0}{0} \\ & \tilde{\sim} \end{aligned}$	$\underset{\sim}{\dot{5}}$	$\begin{aligned} & \stackrel{0}{0} \\ & \text { స̃ } \end{aligned}$	$\stackrel{\leq}{m}$	$\begin{aligned} & \text { s. } \\ & \text { స゙ } \end{aligned}$	$\underset{\sim}{\leq}$		$\begin{aligned} & \text { 訁⿳亠二口欠刂 } \\ & \omega \\ & \omega \end{aligned}$									
		$\begin{aligned} & \text { 을 } \\ & \text { 울 } \\ & \text { 웅 } \end{aligned}$		曷氮				\％		き		5			$\stackrel{5}{9}$									

