ARCH 631. Assignment #6

Date: 10/2/12, due 10/18/12 Worth 20 pts.

Problems:

1. Determine the ultimate moment capacity, $\phi_f M_n$, of a beam with dimensions b = 14 in., $d_{\text{effective}} = 17.5$ in., and h = 20 in., and that has three No. 10 bars (3.81 in.²) of tension-reinforcing steel. $F_v = 60$ ksi, and $f'_c = 4$ ksi.

Answer: $\phi_f M_n = 258.9 \text{ k-ft}$

2. For the beam of Problem 1 which is simply supported and 32 ft long, and where the loads are dead load = 320 lb/ft (not including self weight) and live load = 185 lb/ft, determine if the beam is adequate in bending. $\gamma = 150 \text{ lb/ft}^3$.

Answer: yes ($M_u = 131.8 \text{ k-ft}$)

- **3.** For the beam of Problem 1, check whether the amount of tension steel is within the limits for ductile beam behavior. (*Refer to the table for maximum* ρ *in Note Set 10.1*)

 Partial Answer: yes $(A_{s-max} = 4.43 \text{ in.}^2)$
- **4.** For the beam of Problem 1 and 2, calculate the shear capacity, $\phi_{\nu}V_{c}$, and determine if the beam will required stirrups.

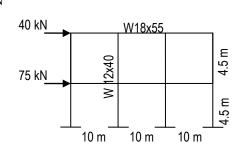
Partial Answer: yes
$$(V_{max} > \frac{\phi_v V_c}{2} = 11.6 \text{ k})$$

5. A reinforced concrete column in a rigid frame has a design compression load of $P_u = 170$ kips, and a design moment of $M_u = 34$ k-ft. With the interaction diagram provided on the next page, determine the amount of reinforcement (number and size of bars) required for a 10 in. square column.

Partial Answer: more than 4-#7.

6. A two story, three bay portal frame has lateral loads from wind at each story as shown. All columns are W12 x 40's while all beams are W 18 x 55's. Using a computer-based structural analysis program, determine the shear, bending moment and axial load in each member (V, M & P). Identify the column and beam with the critical design values. Submit the model file (.mfd) on E-learning, and provide a print of the diagrams.

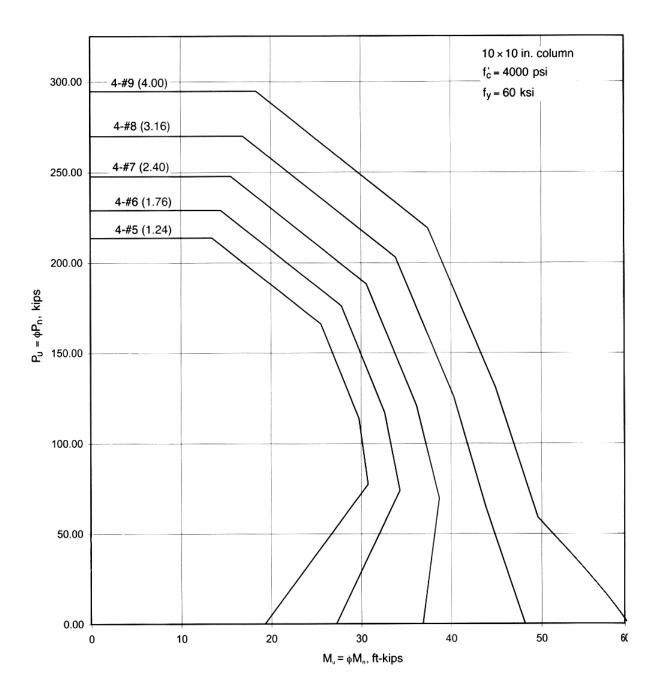
Partial Answers: $V_{\text{max}}(2^{\text{nd}} \text{ windward column, } 1^{\text{st}} \text{ story}) = 31.35 \text{ kN}$


 $V_{\text{max}}(1^{\text{st}} \text{ windward beam, } 1^{\text{st}} \text{ story}) = 11.10 \text{ kN}$

 $P_{\text{max}}(1^{\text{st}} \text{ windward column, } 1^{\text{st}} \text{ story}) = 14.89 \text{ kN}$

 $P_{\text{max}}(1^{\text{st}} \text{ windward beam, } 1^{\text{st}} \text{ story}) = 54.19 \text{ kN}$

 $M_{\text{max}}(2^{\text{nd}} \text{ windward column, } 1^{\text{st}} \text{ story}) = 75.76 \text{ kN-m}$


 M_{max} (1st windward beam, 1st story) = 60.43 kN-m

F2012abn

7. Is the ultimate tensile capacity of 2-#6 grade 40 reinforcing bars greater than that of 1-#8 grade 60 bar?

Partial Answer: 2-#6 T = 35.2 kips, 1-#8 T = 47.4 kips

