## Examples:

Rigid Frames
Example $1 \_$From eStructures v1.1, Schodek and Pollalis, 2000 Harvard College


RIGID FRAME STRUCTURES: LATERAL LOADING PINNED BASE CONNECTIONS


Determine axial forces, shear forces, and bending moments in each member of the rigid frame shown.


## RIGID FRAME STRUCTURES

DETERMINE REACTIONS


Assumed directions of reactions:
Horizontal components balance applied force
Vertical components act as shown to prevent overturning
$\Sigma \mathrm{M}_{\mathrm{A}}=0$
$+2000(12)-R_{c_{y}}(30)=0$ $R_{C_{y}}=800 \downarrow$
$\Sigma F_{y}=0$
$+R_{A_{y}}-800=0$ or $R_{A_{y}}=800 \uparrow$
$\Sigma F_{x}=0$

$$
R_{A_{x}}+R_{C_{x}}=2000
$$

This last equation cannot be solved by statics alone. The structure is actually statically indeterminate. As shown on the following slides, an approximate method of analysis can be used to find the unknown reactions.

Example 1 (continued)


Example 1 (continued)


Example 1 (continued)


Example 1 (continued)


Example 1 (continued)
(4) ? Lateral Loading ( 1 sTEP 8

RIGID FRAME STRUCTURES


Example 1 (continued)


## Example 2

The rigid frame shown at the right has the loading and supports as show. Using superpositioning from approximate analysis methods, draw the shear and bending moment diagrams.

## Solution:

Reactions The two loading situations for which approximate reaction values are available are shown below. These values must be calculated and added together (allowed by superpositioning).


$$
\begin{aligned}
& \mathrm{R}_{\mathrm{AH}}=-0.907 \mathrm{wh}+0.0551 \mathrm{Ph} / \mathrm{L}=-0.907\left(10^{\mathrm{kN} / \mathrm{m}}\right)(6 \mathrm{~m})+\frac{0.0551(50 \mathrm{kN})(6 \mathrm{~m})}{5 m}=-51.11 \mathrm{kN} \\
& \mathrm{R}_{\mathrm{AV}}=-0.197 \mathrm{wh}^{2} / \mathrm{L}+0.484 \mathrm{P}=\frac{-0.197\left(10^{k N / m}\right)(6 \mathrm{~m})^{2}}{5 m}+0.484(50 \mathrm{kN})=10.02 \mathrm{kN} \\
& \mathrm{MR}_{\mathrm{A}}=-0.303 \mathrm{wh}^{2}+0.0112 \mathrm{Ph}^{2} / \mathrm{L}=-0.303\left(10^{\mathrm{kN} / \mathrm{m}}\right)(6 \mathrm{~m})^{2}+\frac{0.0112(50 \mathrm{kN})(6 \mathrm{~m})^{2}}{5 m}=-105.05 \mathrm{kN}-\mathrm{m} \\
& \mathrm{R}_{\mathrm{DH}}=-0.093 \mathrm{wh}-0.0551 \mathrm{Ph} / \mathrm{L}=-0.093\left(10^{k N / m}\right)(6 \mathrm{~m})-\frac{0.0551(50 \mathrm{kN})(6 \mathrm{~m})}{5 m}=-8.89 \mathrm{kN} \\
& \mathrm{R}_{\mathrm{DV}}=0.197 \mathrm{wh}^{2} / \mathrm{L}+0.516 \mathrm{P}=\frac{0.197\left(10^{k N / m}\right)(6 \mathrm{~m})^{2}}{5 m}+0.516(50 \mathrm{kN})=39.98 \mathrm{kN}
\end{aligned}
$$

Member End Forces The free-body diagrams of all the members and joints of the frame are shown below. The unknowns on the members are drawn as anticipated, and the opposite directions are drawn on the joint. We can begin the computation of internal forces with either member AB or CD , both of which have only three unknowns.


Member $A B$ With the magnitudes of reaction forces at A know, the unknowns are at end B of $\mathrm{BA}_{\mathrm{x}}, \mathrm{BA}_{\mathrm{y}}$, and $\mathrm{M}_{\mathrm{BA}}$, which can get determined by applying $\sum F_{x}=0, \sum F_{y}=0$, and $\sum M_{B}=0$. Thus,
$\sum F_{x}=-51.11 \mathrm{kN}+10 \mathrm{kN}(6 m)-B A_{x}=0 \quad \mathrm{BA}_{x}=8.89 \mathrm{kN}, \sum F_{y}=10.02 \mathrm{kN}-B A_{y}=0 \quad$ BAy $=10.02 \mathrm{kN}$
$\sum M_{A}=105.05^{k N-m}-10^{k N / m}(6 m)(3 m)+8.89 k N(6 m)+M_{B A}=0 \quad \mathrm{M}_{\mathrm{BA}}=21.16 \mathrm{kN}-\mathrm{m}$
Joint B Because the forces and moments must be equal and opposite, $\mathrm{BC}_{\mathrm{x}}=8.89 \mathrm{kN}, \mathrm{BC}_{\mathrm{y}}=10.02 \mathrm{kN}$ and $\mathrm{M}_{\mathrm{BC}}=21.16 \mathrm{kN} \cdot \mathrm{m}$

Member $C D$ With the magnitudes of reaction forces at D know, the unknowns are at end C of $\mathrm{CD}_{\mathrm{x}}, \mathrm{CD}_{\mathrm{y}}$, and $\mathrm{M}_{\mathrm{CD}}$, which can get determined by applying $\sum F_{x}=0, \sum F_{y}=0$, and $\sum M_{B}=0$. Thus,
$\sum F_{x}=-8.89 \mathrm{kN}+C D_{x}=0 \quad \mathrm{CD}_{\mathrm{x}}=8.89 \mathrm{kN}, \quad \sum F_{y}=39.98 \mathrm{kN}-C D_{y}=0 \quad \mathrm{CD}_{\mathrm{y}}=39.98 \mathrm{kN}$
$\sum M_{D}=-8.89 \mathrm{kN}(6 m)+M_{C D}=0 \quad M_{\mathrm{DC}}=53.34 \mathrm{kN}-\mathrm{m}$
Joint $C$ Because the forces and moments must be equal and opposite, $\mathrm{CB}_{\mathrm{x}}=8.89 \mathrm{kN}, \mathrm{CB}_{\mathrm{y}}=39.98 \mathrm{kN}$ and $\mathrm{M}_{\mathrm{CB}}=53.34 \mathrm{kN}-\mathrm{m}$

Member BC All forces are known, so equilibrium can be checked.
(Remember: To find the point of zero shear with a distributed load, divide the peak $\{$ triangle $\}$ shear by the distributed load; ex. $\left.51.11 \mathrm{kN} /\left(10^{\mathrm{kN} / \mathrm{m}}\right)=5.11 \mathrm{~m}\right)$


## Example 3

Using Multiframe4D, verify the bending moment diagram for the example in Figure 9.9:


Figure 9.9 The moment distribution illustrates the importance of relative stiffness considerations. The values obtained are quite different from those obtained by estimating points of inflection and using hand calculations.

| Joint Coordinates (ft) |  |  |  |  |
| :--- | :---: | ---: | ---: | ---: |
| Joint | Label | $X$ | $Y$ | $z$ |
| 1 |  | 0.000 | 0.000 | 0.000 |
| 2 | 0.000 | 19.500 | 0.000 |  |
| 3 | 120.000 | 19.500 | 0.000 |  |
| 4 | 120.000 | 0.000 | 0.000 |  |

Assuming steel $(\mathrm{E}=29,000 \mathrm{ksi})$

Sections

Section Properties

| Section | A | Ix | Ix |
| ---: | ---: | ---: | ---: |
|  | in $^{2}$ | in $^{\wedge}$ | in^4 |
| mies-slender | 1.000 | 2380.000 | 2380.000 |
| mies-stiff | 1.000 | 58700.001 | 58700.001 |




## Example 3 (continued)

Displacement:


Maximum Actions for all members (column-1, beam-2, column-3):

|  | Memb | Label | Section | Sign | $\begin{aligned} & \mathbf{P x}^{*} \\ & \text { kip } \end{aligned}$ | $\begin{aligned} & \text { Vy }{ }^{*} \\ & \text { kip } \end{aligned}$ | $\begin{aligned} & \text { Vz' } \\ & \text { kip } \end{aligned}$ | $\begin{gathered} \text { Tx' } \\ \text { kip-ft } \end{gathered}$ | $\begin{aligned} & \text { My' } \\ & \text { kip-ft } \end{aligned}$ | $\underset{\text { Mip-ft }}{\text { Mz }}$ | $\begin{aligned} & \text { dy } y^{*} \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \hline \mathbf{d z} \\ & \text { in } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  | mies-slender | +ve | 216.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1424.716 | 0.486 | 0.000 |
| 2 | 1 |  | mies-slender | -ve | 0.000 | -109.079 | 0.000 | 0.000 | 0.000 | -702.318 | -0.032 | 0.000 |
| 3 | 1 |  | mies-slender | abs | 216.000 | 109.079 | 0.000 | 0.000 | 0.000 | 1424.716 | 0.486 | 0.000 |
| 4 | 2 |  | mies-stiff | +ve | 109.079 | 216.000 | 0.000 | 0.000 | 0.000 | 1424.716 | 0.000 | 0.000 |
| 5 | 2 |  | mies-stiff | -ve | 0.000 | -216.000 | 0.000 | 0.000 | 0.000 | -5055.282 | -7.326 | 0.000 |
| 6 | 2 |  | mies-stiff | abs | 109.079 | 216.000 | 0.000 | 0.000 | 0.000 | 5055.282 | 7.326 | 0.000 |
| 7 | 3 |  | mies-slender | +ve | 216.000 | 109.079 | 0.000 | 0.000 | 0.000 | 702.318 | 0.032 | 0.000 |
| 8 | 3 |  | mies-slender | -ve | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -1424.716 | -0.486 | 0.000 |
| 9 | 3 |  | mies-slender | abs | 216.000 | 109.079 | 0.000 | 0.000 | 0.000 | 1424.716 | 0.486 | 0.000 |

(axes orientation reference)



Maximum Stresses for all members (column-1, beam-2, column-3):

|  | Memb | Label | Section | Sign | Sbz' top ksi | Sbz' bot ksi | $\begin{aligned} & \text { Sx' } \\ & \text { ksi } \end{aligned}$ | $\begin{gathered} \hline \mathrm{S} x^{\prime}+\mathrm{Sb} z^{*} \\ \text { top } \\ \text { ksi } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Sx}^{*}+\mathrm{Sbz} z^{*} \\ \text { bot } \\ \text { koi } \end{gathered}$ | $\begin{aligned} & \text { dy } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { dz' } \\ & \text { in } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  | mies-sI | +ve | 42.494 | 86.203 | 7.714 | 50.208 | (93.917 | 0.486 | 0.000 |
| 2 | 1 |  | mies-slen | -ve | -86.203 | -42.494 | 0.000 | -78.489 | 34.780 | -0.032 | 0.000 |
| 3 | 1 |  | mies-slen | abs | 86.203 | 86.203 | 7.714 | 78.489 | 93.917 | 0.486 | 0.000 |
| 4 | 2 |  | mies-sti | +ve | 38.237 | 10.776 | 1.283 | 39.521 | 12.060 | 0.000 | 0.000 |
| 5 | 2 |  | mies-stiff | -ve | -10.776 | -38.237 | 0.000 | -9.493 | -36.954 | -7.326 | 0.000 |
| 6 | 2 |  | mies-stiff | abs | 38.237 | 38.237 | 1.283 | 39.524 | 36.954 | 7.326 | 0.000 |
| 7 | 3 |  | mies-sI | +ve | 86.203 | 42.494 | 7.714 | 93.917 | ) 50.208 | 0.032 | 0.000 |
| 8 | 3 |  | mies-slen | -ve | -42.494 | -86.203 | 0.000 | -34.780 | -78.489 | -0.486 | 0.000 |
| 9 | 3 |  | mies-slen | abs | 86.203 | 86.203 | 7.714 | 93.917 | 78.489 | 0.486 | 0.000 |

Beam-Column stress verification (combined stresses) when d=24in, A=28 in ${ }^{2}$. $\mathrm{I}_{\mathrm{x}}=2380 \mathrm{in}^{4}$ :

$$
f_{\max }=\frac{P}{A}+\frac{M}{S}=\frac{P}{A}+\frac{M c}{I}=\frac{216 k}{28 \mathrm{in}^{2}}+\frac{1425^{k-f t} \cdot(24 \mathrm{in} / 2)}{2380 \mathrm{in}^{4}} \cdot \frac{12 \mathrm{in}}{f t}=7.71 \mathrm{ksi}+86.22 \mathrm{ksi}=93.93 \mathrm{ksi}
$$

