Examples:
 Beams (V, M, Stresses and Design)

Example 1

Example Problem 9.5: Section Modulus

 (Figures 9.26 to 9.28)Two $\mathrm{C} 10 \times 15.3$ steel channels are placed back to back to form a 10"-deep beam. Determine the permissible P if $F_{b}=30 \mathrm{ksi}$. Assume A572 grade 50 steel.
Solution:

$$
\begin{aligned}
I_{x} & =67.4 \mathrm{in} . .^{4} \times 2=134.8 \mathrm{in} . .^{4} \\
M_{\max } & =1 / 2(5)(5)+(P / 2)(5) \\
M_{\max } & =12.5+2.5 P \\
& =(12.5 \mathrm{k}-\mathrm{ft} .+2.5 P) \times(12 \mathrm{in} . / \mathrm{ft.}) \\
f & =\frac{M c}{I}=\frac{M}{S} ; \quad \therefore M=F_{b} \times S_{x} \\
S_{x} & =2 \times 13.5 \mathrm{in} .{ }^{3}=27 \mathrm{in} . .^{3}
\end{aligned}
$$

Figure 9.26 Two steel channels.

Figure 9.28 Load, V, and M diagrams.

Example 2 From eStructures v1.1, Schodek and Pollalis, 2000 Harvard College

CHECK BENDING, SHEAR, BEARING STRESSES AND DEFLECTIONS

Reference: eStructures v1.1, Shodek \& Pollalis, 2000 Simple Beams, Beam Analysis
? Bin Beam Analysis
STEP 2

DRAW SHEAR AND MOMENT DIAGRAMS

SHEAR AND MOMENT DIAGRAMS:

Maximum Shear Force:
$=1000 \mathrm{lbs}$
Maximum Bending Moment:

$$
=10,000 \mathrm{ft}-\mathrm{lbs}=120,000 \mathrm{in} \text {-lbs }
$$

Example 2 (continued)
앙 ? Beam Analysis
DETERMINE BEAM PROPERTIES

Example 2 (continued)

Example 2 (continued)

DEFLECTIONS

For a simply supported beam with a concentrated load, the maximum deflection is given by $\Delta=\mathrm{PL}^{3} / 48 \mathrm{EI}$:

$$
\begin{aligned}
\Delta & =\mathrm{PL}^{3} / 48 \mathrm{EI} \\
& =\frac{(2000 \mathrm{lb})(20 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft})^{3}}{48\left(1.6 \times 10^{6} \mathrm{Ib} / \mathrm{in}^{2}\right)\left(576 \mathrm{in}^{4}\right)} \\
& =0.625 \text { inches }
\end{aligned}
$$

COMPARE ACTUAL DEFLECTION TO ALLOWABLE DEFLECTION:
$\Delta_{\text {actual }}=0.625$ in
$\Delta_{\text {alallowable }} \mathrm{L} / 360=(20 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft}) / 360=0.67 \mathrm{in}$.

$$
\Delta_{\text {actual }}<\Delta_{\text {allowable }}
$$

Example 3

Using an "approximate" method of analysis (specifically beam diagrams and formulas with superpositioning), find reactions, shears, and moments present in the structure. Verify the solution using a computer-based structural analysis program (Multiframe4D).

SOLUTION:

The load cases can be divided into the two shown which correspond to beam diagrams 30 and 29 (mirrored).

Because the maximum moments do not occur at the same place, find the reactions to add up and construct the V \& M diagrams. The moment diagram should look like the two diagrams (with one flipped) "added" together:

Diagram 30:
$R_{1}=\frac{13}{32} P=\frac{13}{32}(10 k)=4.06 k \quad R_{2}=\frac{11}{16} P=\frac{11}{16}(10 k)=6.875 k$
$R_{3}=-\frac{3}{32} P=-\frac{3}{32}(10 k)=-0.9375 k$

Diagram 29:
$R_{1}\left(\right.$ was $\left.R_{3}\right)=-\frac{1}{16} w l=-\frac{1}{16}(2 \mathrm{k} / \mathrm{ft}) 10 f t=-1.25 k$

$$
R_{2}=\frac{5}{8} w l=\frac{5}{8}(2 \mathrm{k} / f t) 10 f t=12.5 k
$$

$R_{3}\left(\right.$ was $\left.R_{1}\right)=\frac{7}{16} w l=\frac{7}{16}(2 \mathrm{k} / f t) 10 f t=8.75 k$

Reaction sums:
$R_{1}=4.06+-1.25=2.81 k \quad R_{2}=6.875+12.5=19.375 k \quad R_{3}=-0.9375+8.75=7.8125 k$
Shear calculations:
$\mathrm{V}_{\mathrm{A}}=0$ and $2.81 \mathrm{k} \quad \mathrm{V}_{\mathrm{at} 5 \mathrm{t}}=2.81 \mathrm{k}$ and 2.81-10 $=-7.19 \mathrm{k} \quad \mathrm{V}_{\mathrm{B}}=-7.19 \mathrm{k}$ and $-7.19+19.375=12.185 \mathrm{k}$
$V_{C}=12.185-2 \mathrm{k} / \mathrm{ft}(10 \mathrm{ft})=-7.8125$ and $-7.815+7.815=0 \mathrm{k}$
Moment shapes:
$M_{A}=0 \quad M_{a t} 5 \mathrm{ft}=0+2.81 \mathrm{k}(5 \mathrm{ft})=14.05 \mathrm{k}-\mathrm{ft} \quad \mathrm{M}_{\mathrm{B}}=14.05-7.19 \mathrm{k}(5 \mathrm{ft})=-21.9 \mathrm{k}-\mathrm{ft}$
location of cross over $=12.185 \mathrm{k} /(2 \mathrm{k} / \mathrm{ft})=6.0925 \mathrm{ft}: \quad \mathrm{Mat} 6.1 \mathrm{ftrom} \mathrm{B}=-21.9+12.185 \mathrm{k}(6.0925 \mathrm{ft}) / 2=15.218 \mathrm{k}-\mathrm{ft}$
$\mathrm{Mc}_{\mathrm{C}}=15.218-7.8125 \mathrm{k}(3.9075 \mathrm{ft}) / 2=0$

MULTIFRAME4D:
V:

