Examples: Load Tracing and Factored Loads

EXAMPLE (pg. 129 with corrections and additions)

Assume that the average dead plus live load on the structure shown in Figure 3.15 is 60 lbs/ft². Determine the reactions for Beam D. This is the same structure as shown in Figure 3.1. ^ E, B and A Assuming all beams are weightless!

Solution:

Note carefully the directions of the decking span. Beam D carries floor loads from the **jecking to** the left (see the contributory area and load strip), but not to the right, since the

By symmetry; R_{CC1} = R_{CC3} = (4893 lb + 4896 lb)/2 = 4896 lb

By symmetry; R_{CC2} = R_{CC4} = (4464 lb + 4464 lb)/2 + (6 ft)(60 lb/ft²)(12 ft)/2 = 6624 lb

Additional loads are transferred to the column from the reactions on Beams C and F: $R_{C1} = R_{C2} = R_{F1} = R_{F2} = wL/2 = (6 \text{ ft})(60 \text{ lb/ft}^2)(20 \text{ ft})/2 = 3600 \text{ lb}$

center decking runs parallel to Beam D and is not carried by it. Beam D also picks up the end of Beam G and thus also "carries" the reactive force from Beam G. It is therefore necessary to analyze Beam G first to determine the magnitude of this force. The analysis appears in Figure 3.15. The reactive force from Beam G of 2160 lbs is then treated as a downward force acting on Beam D. The load model for Beam D thus consists of distributed forces from the decking plus the 2160-lb force. It is then analyzed by means of the equations of statics to obtain reactive forces of 4896 lbs and 4464 lbs at its ends.

Figure 3.1

C1 = 4896 lb + 3600 lb = 8,496 lbC2 = 6624 lb + 3600 lb = 10,224 lbC3 = 4896 lb + 3600 lb = 8,496 lbC4 = 6624 lb + 3600 lb = 10,224 lb

Example 2

Determine the controlling load combinations(s) using AISC-LRFD for a building column subject to the following service or nominal (unfactored) axial compressive loads: D = 30 k, L = 50 k, $L_r = 10$ k, W = 25 k, E = 40 k

Using	я	spreadsheet	anal	vsis
Using	а	spreausneet	anai	ysis.

LRFD (ASCE-7)		FACTORED LOAD
1.4D		Dorid
1.4D	=	42 kips
$1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$		•
$1.2D + 1.6L + 0.5L_r$	=	121
$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$		
$1.2D + 1.6L_r + L$	=	102
$1.2D + 1.6L_r + 0.5W$	=	64.5
$1.2D + 1.6L_r - 0.5W$	=	39.5
$1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$		
$1.2D + 1.0W + L + 0.5L_r$	=	116
$1.2D - 1.0W + L + 0.5L_r$	=	66
1.2D + 1.0E + L + 0.2S		
1.2D + 1.0E + L	=	126
1.2D - 1.0E + L	=	46
0.9D + 1.0W		
0.9D + 1.0W	=	52
0.9D - 1.0W	=	2
0.9D + 1.0E		
0.9D + 1.0E	=	67
0.9D - 1.0E	=	-13
	Critical Factored Load	126 kips (C)
		-13 kips (T)

Example 3

EXAMPLE 2-4

Determine factored loads for the beam shown in Figure 2–16.

Solution

For the left half of the beam:

$$w_{u1} = 1.2w_D + 1.6w_L$$

 $w_{u1} = 1.2 \times 1.0 + 1.6 \times 2.0 = 4.4 \text{ kip/ft}$

For the right half of the beam:

$$w_{u2} = 1.2w_D + 1.6w_L$$

 $w_{u2} = 1.2 \times 1.0 + 1.6 \times 0 = 1.2 \text{ kip/ft}$

FIGURE 2–16 Example 2–4 (service loads).

FIGURE 2-17 Example 2-4 (factored loads).

The concentrated load is a live load only:

$$P_u = 1.2P_D + 1.6P_L$$

 $P_u = 1.2 \times 0 + 1.6 \times 10 = 16 \text{ kip}$

The factored loads on the beam are shown in Figure 2–17.