
Examples: Steel

Example 1 (AISC Design Examples vV13.0)

Example F.1-1a W-Shape Flexural Member Design in Strong-Axis Bending, Continuously Braced.

Given:

Select an ASTM A992 W-shape beam with a simple span of 35 feet. Limit the member to a maximum nominal depth of 18 in. Limit the live load deflection to L/360. The nominal loads are a uniform dead load of 0.45 kip/ft and a uniform live load of 0.75 kip/ft. Assume the beam is continuously braced.

Beam Loading & Bracing Diagram (full lateral support)

Solution:

Material Properties:

ASTM A992
$$F_y = 50 \text{ ksi}$$
 $F_u = 65 \text{ ksi}$

Manual Table 2-3

Calculate the required flexural strength

Calculate the requirea flexural strength	
LRFD	ASD
$w_u = 1.2(0.450 \text{ kip/ft}) + 1.6 (0.750 \text{ kip/ft})$	$w_a = 0.450 \text{ kip/ft} + 0.750 \text{ kip/ft}$
= 1.74 kip/ft	= 1.20 kip/ft
$M_u = \frac{1.74 \mathrm{kip/ft} \left(35.0 \mathrm{ft}\right)^2}{8} = 266 \mathrm{kip-ft}$	$M_a = \frac{1.20 \text{kip/ft} (35.0 \text{ft})^2}{8} = 184 \text{kip-ft}$

Calculate the required moment of inertia for live-load deflection criterion of L/360

$$\Delta_{max} = \frac{L}{360} = \frac{35.0 \text{ ft}(12 \text{ in./ft})}{360} = 1.17 \text{ in.}$$

$$I_{x(reqd)} = \frac{5wl^4}{384E\Delta_{max}} = \frac{5(0.750 \text{ kip/ft})(35.0 \text{ ft})^4 (12 \text{ in./ft})^3}{384 (29,000 \text{ ksi})(1.17 \text{in.})} = 748 \text{ in.}^4$$

Manual Table 3-23 Diagram 1

Select a W18×50 from Table 3-2

Per the User Note in Section F2, the section is compact. Since the beam is continuously braced and compact, only the yielding limit state applies.

LRFD	ASD
$\phi_b M_n = \phi_b M_{px} = 379 \text{ kip-ft} > 266 \text{ kip-ft}$ o.k.	$\frac{M_n}{\Omega_b} = \frac{M_{px}}{\Omega_b} = 252 \text{ kip-ft} > 184 \text{ kip-ft} \textbf{o.k.}$

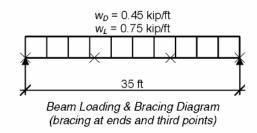
Manual Table 3-2

 $I_x = 800 \text{ in.}^4 > 748 \text{ in.}^4$ o.k.

Manual Table 3-2

Example 1 (continued)

$F_y = 50 \text{ ksi}$ W Shapes Selection by Z_x												X		
N	26	M_{px}/Ω_b	ф _bМ _{px}	M_{rx}/Ω_b kip-ft	φ _b M _{rx} kip-ft	BF					V_{nx}/Ω_{v}	φ , V _{nx}		
Shape	Z _x	kip-ft	kip-ft			kips	kips	L _p	L,	I _x	kips	kips		
F	in.3	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in.4	ASD	LRFD		
W21×48 ^f	107	265	398	162	244	9.78	14.7	6.09	16.6	959	144	217		
W16×57	105	262	394	161	242	7.98	12.0	5.65	18.3	758	141	212		
W14×61	102	254	383	161	242	4.96	7.46	8.65	27.5	640	104	156		
W18×50	₹ 101	252	379	155	233	8.69	13.1	5.83	17.0	800	128	192		
N10×77	97.6	244	366	150	225	2.59	3.90	9.18	45.2	455	112	169		
N12×65 ^f	96.8	237	356	154	231	3.60	5.41	11.9	35.1	533	94.5	148		
N21×44	95.4	238	358	143	214	11.2	16.8	4.45	13.0	843	145	217		
W16×50	92.0	230	345	141	213	7.59	11.4	5.62	17.2	659	124	185		
W18×46	90.7	226	340	138	207	9.71	14.6	4.56	13.7	712	130	195		
W14×53	87.1	217	327	136	204	5.27	7.93	6.78	22.2	541	103	155		
W12×58	86.4	216	324	136	205	3.76	5.66	8.87	29.9	475	87.8	132		
W10×68	85.3	213	320	132	199	2.57	3.86	9.15	40.6	394	97.8	147		
W16×45	82.3	205	309	127	191	7.16	10.8	5.55	16.5	586	111	167		
W18×40	78.4	196	294	119	180	8.86	13.3	4.49	13.1	612	113	169		
W14×48	78.4	196	294	123	184	5.10	7.66	6.75	21.1	484	93.8	141		
W12×53	77.9	194	292	123	185	3.65	5.48	8.76	28.2	425	83.2	125		
W10×60	74.6	186	280	116	175	2.53	3.80	9.08	36.6	341	85.8	129		
ASD	LRFD	f Shape e	exceeds c	ompact lin	nit for flex	ure with i	$F_y = 50 \text{ ks}$	i	61			-		
Ω _a = 1.67	$\phi_b = 0.90$	D- 2" -												


I required is in this grouping, with the W21x44 (bold) the most economical. But this section must be 18 inches maximum, and the W18 x 46 does not have enough (even though it has enough moment capacity of 340 k-ft $(\phi_b M_{px})$)

Look to the next section above for a W18 with I > 748 in⁴.

Example F.1-2a W-Shape Flexural Member Design in Strong-Axis Bending, Braced at Third Points

Given:

Verify the strength of the W18×50 beam selected in Example F.1-1a if the beam is braced at the ends and third points rather than continuously braced.

Solution:

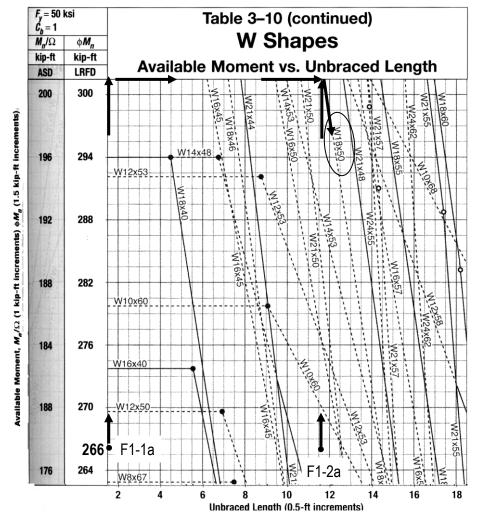
Required flexural strength at midspan from Example F.1-1a

LRFD	ASD
$M_u = 266 \text{ kip-ft}$	$M_a = 184 \text{ kip-ft}$

Example 1 (continued)

$$L_b = \frac{35.0 \, \text{ft}}{3} = 11.7 \, \text{ft}$$

By inspection, the middle segment will govern. For a uniformly loaded beam braced at the ends and third points, $C_b = 1.01$ in the middle segment. Conservatively neglect this small adjustment in this case.

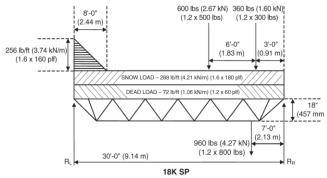

Manual Table 3-1

Obtain the available strength from Table 3-10

Enter Table 3-10 and find the intersection of the curve for the W18×50 with an unbraced length of 11.7 ft. Obtain the available strength from the appropriate vertical scale to the left.

LRFD	ASD	
$\phi_b M_n \approx 302 \text{ kip-ft} > 266 \text{ kip-ft}$ o.k.	$\frac{M_n}{\Omega_b} \approx 201 \text{ kip-ft} > 184 \text{ kip-ft}$ o.k.	p-ft o.k.

Manual Table 3-10



For F1-1a, the unbraced length is zero. There is no zero on the chart, so the far left is used starting at the moment required of 266 k-ft. When a W18 is not encountered with a greater moment capacity going up on the page, going to the right will intersect with a W18 line.

For F1-2a, the unbraced length is 11.7 ft. The same procedure applies, starting at a moment required of 266 k-ft. If no match is close to the

Example 2 (LRFD)

U.S. CUSTOMARY UNITS AND (METRIC UNITS) Factored Load diagram per ASCE 7 2.3.2(3) 1.2D + 1.6S

Joist manufacturer to design joist to support factored loads as shown

Joist Supplier to design joist to support loads as shown above.

Total Load =
$$\frac{256}{2}$$
(8) + (288 + 72)30 + 600 + 960 + 360 = 13,744 lbs.

$$R_{L} = \frac{256 (8)}{2} \left[\frac{30 - \frac{8}{3}}{30} \right] + \frac{(288 + 72)(30)}{2} + 600 \left[\frac{9}{30} \right] + 960 \left[\frac{7}{30} \right] + 660 \left[\frac{3}{30} \right] =$$

 $R_L = 6773$ lbs.

 $R_{R} = 6971$ lbs.

Assume
$$R_R = \frac{W_{e1}(L)}{2}$$
, $W_{e1} = \frac{2(6971)}{30} = 465$ lbs/ft

Point of Max. Mom. = Point of Zero Shear(V) = L₁ (dist. from rt. end of Jst)

$$V = Zero = 6971 - (360+600+960) - (288+72)(L_1)$$

 $L_1 = 14.03$ ft.

 $M @ L_1 = 6971(14.03) - 360(11.03) -$

M = 48.634 ft. lbs.

Assume M =
$$\frac{W_{e2}(L)^2}{8}$$
, $W_{e2} = \frac{8(48.634)}{(30)^2} = 432.3$ lbs./ft.

Using
$$W_{e1} = 465 LB/ft$$
. @ SPAN = 30', and D = 18"

Select 18K7 for total load (502) and live load (180) and call it: **18K9SP**

(c) Special Considerations

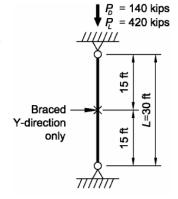
The **specifying professional** shall indicate on the construction documents special considerations including:

- a) Profiles for non-standard joist and Joist Girder configurations (Standard joist and Joist Girder configurations are as indicated in the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption).
- b) Oversized or other non-standard web openings
- c) Extended ends
- d) Deflection criteria for live and total loads for non-SJI standard joists
- e) Non-SJI standard bridging

LRFDSTANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES

Based on a 50 ksi Maximum Yield Strength – Loads shown in Pounds per Linear Foot (plf)

Joist Designation	18K3	18K4	18K5	18K6	18K7	18K9	18K10
Depth (In.)	18	18	18	18	18	18	18
Approx. Wt. (lbs./ft.)	6.6	7.2	7.7	8.5	9	10.2	11.7
Span (ft.)							
18	825 550	825 550	825 550	825 550	825 550	825 550	825 550
19	771 494	825 523	825 523	825 523	825 523	825 523	825 523
20	694 423	825 490	825 490	825 490	825 490	825 490	825 490
21	630 364	759 426	825 460	825 460	825 460	825 460	825 460
22	573 316	690 370	777 414	825 438	825 438	825 438	825 438
23	523 276	630 323	709 362	774 393	825 418	825 418	825 418
24	480 242	577 284	651 318	709 345	789 382	825 396	825 396
25	441 214	532 250	600 281	652 305	727 337	825 377	825 377
26	408 190	492 222	553 249	603 271	672 299	807 354	825 361
27	378 169	454 198	513 222	558 241	622 267	747 315	825 347
28	351 151	423 177	477 199	519 216	577 239	694 282	822 331
29	327 136	394 159	444 179	483 194	538 215	646 254	766 298
30	304 123	367 144	414 161	451 175	502 194	603 229	715 269
31	285 111	343 130	387 146	421 158	469 175	564 207	669 243


- Top values are total factored distributed load from strength and deflection criteria.
- Values below in gray are for live load deflection limit (unfactored).

Example 3 (AISC Design Examples vV13.0)

Example E.1b W-Shape Column Design with Intermediate Bracing

Given:

Redesign the column from Example E.1a assuming the column is laterally braced about the y-y axis and torsionally braced at the midpoint.

Solution:

Calculate the required strength

LRFD	ASD
$P_u = 1.2(140 \text{ kips}) + 1.6(420 \text{ kips}) = 840 \text{ kips}$	$P_a = 140 \text{ kips} + 420 \text{ kips} = 560 \text{ kips}$

Select a column using Manual Table 4-1.

For a pinned-pinned condition, K = 1.0

Since the unbraced lengths differ in the two axes, select the member using the y-y axis then verify the strength in the x-x axis.

Enter Table 4-1 with a y-y axis effective length, KL_y , of 15 ft and proceed across the table until reaching a shape with an available strength that equals or exceeds the required strength. Try a W14×90. A 15 ft long W14×90 provides an available strength in the y-y direction of

LRFD	ASD
$\phi P_n = 1000 \text{ kips}$	$P_n/\Omega = 667 \text{ kips}$

The r_x/r_y ratio for this column, shown at the bottom of Manual Table 4-1, is 1.66. The equivalent y-y axis effective length for strong axis buckling is computed as

$$KL = \frac{30.0 \,\text{ft}}{1.66} = 18 \,\text{ft}$$

From the table, the available strength of a W14×90 with an effective length of 18 ft is

	LRFD		ASD	
($\rho_c P_n = 928 \text{ kips} > 840 \text{ kips}$	o.k.	$P_n/\Omega_c = 618 \text{ kips} > 560 \text{ kips}$	o.k.

The available compression strength is governed by the x-x axis flexural buckling limit state.

Commentary Table C-C2.2

> Manual Table 4-1

Example 3 (continued)

W Shapes W14													
Shape					W1	4 ×				_==,1			
Wt/	ft	14		13		120		109		99		$P_n/\Omega_c \mid \phi_c P_n$	
Desi	gn	P_n/Ω_c	φ _c P _n	$P_n/\Omega_c \phi_c P_n$		P_n/Ω_c	ф _с Р _п	100	$P_n/\Omega_c \phi_c P_n$		$P_n/\Omega_c \phi_c P_n$		$\phi_c P_n$
	0	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFE
	0	1280	1920	1160	-1740	1060	1590	959	1440	872	1310	792	1190
7,	6	1250 1240	1870 1860	1130 1120	1700 1680	1030 1020	1550 1530	934 924	1400 1390	849 840	1280 1260	771 763	1160 1150
6	8	1220	1840	1110	1660	1010	1510	914	1370	831	1250	754	1130
rat	9	1210	1820	1090	1640	995	1500	902	1360	820	1230	745	1120
(ft) with respect to least radius of gyration	10	1200	1800	1080	1620	981	1470	889	1340	808	1210	734	1100
0 8	11	1180	1770	1060	1590	965	1450	875	1320	795	1200	722	1090
gie	12	1160	1740	1040	1570	949	1430	860	1290	781	1170	709	1070
12	13 14	1140 1120	1720 1690	1020	1540 1510	931	1400	844	1270	767	1150	696	1050
eas	15	1100	1650	982	1480	912 893	1370 1340	827 809	1240 1220	751 734	1130 1100	682 667	1020 1000
9	16	1080	1620	959	1440	872	1310	790	1190	717	1080	651	978
ect	17	1050	1580	936	1410	851	1280	771	1160	699	1050	635	954
dsa	18	1030	1550	912	1370	829	1250	751	1130	681	1020	618	928
Ē	19	1000	1510	887	1330	806	1210	730	1100	662	995	600	902
3	20	979	1470	862	1300	783	1180	709	1070	642	966	583	876
E	22	926	1390	809	1220	735	1100	665	1000	602	906	546	821
K	24	871	1310	756	1140	685	1030	620	932	562	844	509	765
gth	26 28	815 759	1230 1140	702 647	1050 973	636 586	956 881	575 530	864 797	520 479	782 720	471 434	708 652
Effective length KL	30	702	1060	594	892	537	807	485	730	438	659	397	596
tive	32	647	972	541	814	489	735	442	664	399	599	361	542
Lec	34	592	890	491	738	443	666	400	601	360	542	326	490
<u></u>	36	540	811	441	663	398	598	359	540	323	486	292	439
	38	489	734	396	595	357	537	322	484	290	436	262	394
	40	441	663	358	537	322	484	291	437	262	393	236	355
						Properti	es						
P _{wo} (kips)	, I	191	287	175	263	151	227	128	191	111	167	95.9	144
P _{wi} (kips/ii P _{wb} (kips)	1.)	22.7 477	34.0 717	21.5	32.3	19.7 312	29.5	17.5	26.3	16.2	24.3	14.7	22.0
P _{fb} (kips)		222	334	199	612 298	165	468 249	138	330 208	173	260 171	129 94.3	194 142
$L_p(ft)$			4.1		3.3	_	3.2		3.2		3.5		5.2
L, (ft)			1.7		6.0		2.0		8.4		5.3		2.6
A_g (in.2)			2.7		8.8	3	5.3	3	2.0	2	9.1	2	6.5
I _x (in.4)		171		1530		138		124		111		99	
\hat{l}_y (in.4) r_y (in.)		67	3.98	548		49		44		40		36	
Ratio r./r.			1.59		3.76 1.67		3.74 1.67		3.73 1.67		3.71 1.66		3.70 1.66
P. (KL2)/11) ⁴ (k-in. ²)	4890		43800		39500	000000000000000000000000000000000000000	3550		3180	Silvarciso.	2860	
P (KL2)/1)4 (k-in.2)	1940		15700		14200		1280		1150		1040	
ASD		LRF)										

Example 4 (LRFD)

Investigate the accepatbility of a W16 x 67 used as a beam-column under the unfactored loading shown in the figure. It is A992 steel ($F_v = 50 \text{ ksi}$). Assume 25% of the load is dead load with 75% live load.

SOLUTION:

DESIGN LOADS (shown on figure):

Axial load = 1.2(0.25)(350k)+1.6(0.75)(350k)=525k

Moment at joint = 1.2(0.25)(60 k-ft) + 1.6(0.75)(60 k-ft) = 90 k-ft

Determine column capacity and fraction to choose the appropriate interaction equation:

$$\frac{kL}{r_x} = \frac{15 ft (12^{in}/f_t)}{6.96 in} = 25.9 \text{ and } \frac{kL}{r_y} = \frac{15 ft (12^{in}/f_t)}{2.46 in} = 73 \text{ (governs)}$$

$$P_c = \phi_c P_n = \phi_c F_{cr} A_g = (30.5ksi)19.7in^2 = 600.85k$$

$$\frac{P_r}{P_c} = \frac{525k}{600.85k} = 0.87 > 0.2 \quad \text{so use} \quad \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \le 1.0$$

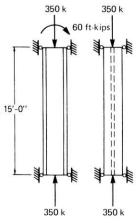
There is no bending about the y axis, so that term will not have any values.

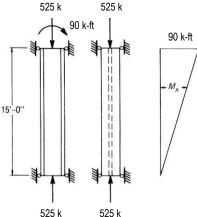
Determine the bending moment capacity in the x direction:

The unbraced length to use the full plastic moment (L_p) is listed as 8.69 ft, and we are over that so of we don't want to determine it from formula, we can find the beam in the Available Moment vs. Unbraced Length tables. The value of ϕM_n at L_b =15 ft is 422 k-ft.

Determine the magnification factor when $M_1 = 0$, $M_2 = 90$ k-ft:

$$C_m = 0.6 - 0.4 \frac{M_1}{M_2} = 0.6 - \frac{0^{k-ft}}{90^{k-ft}} = 0.6 \le 1.0$$


$$C_m = 0.6 - 0.4 \frac{M_1}{M_2} = 0.6 - \frac{0^{k-ft}}{90^{k-ft}} = 0.6 \le 1.0 \qquad P_{e1} = \frac{\pi^2 EA}{\left(\frac{Kl}{r}\right)^2} = \frac{\pi^2 (30x10^3 ksi)19.7 in^2}{\left(25.9\right)^2} = 8,695.4k$$


$$B_1 = \frac{C_m}{1 - (P_u/P_{el})} = \frac{0.6}{1 - (525k/8695.4k)} = 0.64 \ge 1.0 \quad \text{USE 1.0}$$

Finally, determine the interaction value:

$$\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) = 0.87 + \frac{8}{9} \left(\frac{90^{k-ft}}{422^{k-ft}} \right) = 1.06 \le 1.0$$

This is **NOT OK.** (and outside error tolerance). The section should be larger.

