Examples: Timber

Example 1

Design a Flat Roof joist, 16 in. on center (o.c.), 18 ft span with Douglas firlarch No. 2. Snow load is 30 psf. Dead load (including ballast, roofing, sheathing, joists & ceiling) = 18.9 psf. $C_r = 1.15$ for bending only.

 $F_{b} = 875 \text{ psi}; F_{v} = 95 \text{ psi}; E = 1.6 \text{ x } 10^{6} \text{ psi}$

Also design the glulam girder supporting the joists if it spans 35 ft (simply supported) and $F_{\rm b} = 2400$ psi.

Assume the density of the glulam timber is 32 lb/ft^3 .

The load case that is most likely to govern the design is Dead + Live. Because the live load is from snow, C_D = 1.15:

$$\frac{18.9\,psf}{0.9} = 21psf < \frac{(18.9\,psf + 30\,psf)}{1.15} = 42.5$$

<u>Joist</u>

The distributed load for each joist needs to be found by multiplying the area load by the tributary width:

$$M_{\text{max}} = \frac{wl^2}{8} = \frac{(65.2 \frac{lb}{ft})(18 ft)^2}{8} = 2641^{lb-ft}$$

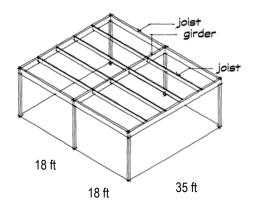
Allowable stress is the tabulated stress multiplied by all applicable adjustment factors, which would be C_D and C_T :

SECTION PROPERTIES

$$F_b' = F_b C_D C_r = 875 \frac{lb}{in^2} (1.15)(1.15) = 1157 \text{ lb/in}^2$$

$$\mathsf{S}_{\mathsf{req'd}} \ge \frac{M}{F'_b} = \frac{2641^{lb-ft}}{1157^{lb}_{in^2}} \cdot (12^{in}_{ft}) = 27.4in^3$$

Shear can guite often govern the design of timber beams:


$$V_{\text{max}} = \frac{wl}{2} = \frac{(65.2 \, lb/_{ft})(18 \, ft)}{2} = 587^{lb}$$

Allowable stress is the tabulated stress multiplied by all applicable adjustment factors, which would be CD only:

$$F'_{v} = F_{v}C_{D} = 95\frac{lb}{in^{2}}(1.15) = 109 \text{ lb/in}^{2}$$

Shear stress in a rectangular beam is found from 3V/2A:

$$\mathsf{A}_{\mathsf{req'd}} \ge \frac{3V}{2F'_{v}} = \frac{3(587^{lb})}{2(109^{lb/}_{in^{2}})} = 8.1in^{2}$$

JOISTS	AND BEAR	NS			
Nominal Size In Inches b h	Surfaced Size In Inches For Design b h	Area (A) A = bh (In ²)	Section Modulus (S) $S = \frac{bh^2}{6}$ (In 3)	Moment of Inertia (I) $I = \frac{bh^3}{12}$ (In 4)	Board Feet Per Linear Foot of Piece
2 x 2 2 x 4 2 2 x 5 2 2 x 5 2 2 x 10 2 2 x 14	$\begin{array}{c} 1.5 \ \times \ 1.5 \\ 1.5 \ \times \ 2.5 \\ 1.5 \ \times \ 3.5 \\ 1.5 \ \times \ 4.5 \\ 1.5 \ \times \ 5.5 \\ 1.5 \ \times \ 7.25 \\ 1.5 \ \times \ 9.25 \\ 1.5 \ \times \ 11.25 \\ 1.5 \ \times \ 13.25 \end{array}$	2.25 3.75 5.25 6.75 8.25 10.88 13.88 16.88 19.88	0.562 1.56 3.06 5.06 7.56 13.14 21.39 31.64 43.89	0.422 1.95 5.36 11.39 20.80 4763 98.93 177.98 290.78	0.33 0.50 0.67 .83 1.00 1.33 1.67 2.00 2.33
3×3 3×4 3×5 3×6 3×10 3×12 3×16 3×16	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6.25 8.75 11.25 13.75 18.12 23.12 28.12 33.12 38.12	2.60 5.10 8.44 12.60 21.90 35.65 52.73 73.15 96.90	3.26 8.93 18.98 34.66 79.39 164.89 296.63 484.63 738.87	0.75 1.00 1.25 1.50 2.00 2.50 3.00 3.50 4.00

HDH-

)

Allowable deflection is not known, but I_{req'd} could be determined from $\Delta = \frac{5wl^4}{384EI} \le \Delta_{limit}$ then $I_{req'd} \ge \frac{5wl^4}{384E\Delta_{limit}}$

From the section property table, a 2 x 12 satisfies Areq'd and Ireq'd. (bending governs)

Girder

The distributed load on the girder is the reaction of each joist over the 16 inch spacing plus the self weight of the girder.

Guessing a self weight of 40 lb/ft (\approx 32 lb/ft³x1ft²):

$$W = \frac{V}{spacing} + s.w. = \frac{587lb}{16in} \cdot \frac{12in}{ft} + 40 \frac{lb}{ft} = 480 \frac{lb}{ft}$$

$$M_{\text{max}} = \frac{wl^2}{8} = \frac{(480\,l^{b}/_{ft})(35\,ft)^2}{8} = 73,500^{lb-ft}$$

Allowable stress is the tabulated stress multiplied by all applicable adjustment factors, which would be C_F . The charts provided say that C_F has been included in the section modulus. If we didn't have a chart that included C_F and we don't know the depth, we could guess - say 18 inches:

$$C_{\rm F} = \left(\frac{12}{d}\right)^{\frac{1}{9}} = \left(\frac{12}{18}\right)^{\frac{1}{9}} = 0.956 \ (<1) \text{ which would need to be multiplied with all the other adjustment factors by Fb to find F'b$$

$$\mathsf{S}_{\mathsf{req'd}} \ge \frac{M}{F_b'} = \frac{73,500^{lb-ft}}{2400^{lb/_{in^2}}} \cdot (12^{in/_{ft}}) = 367.5 in^3$$

No information is available to evaluate shear or deflection. Based on that, try a 5 1/8 x 22.5. It has a smaller area than the 8 $\frac{3}{4}$ section with a big enough adjusted S. (Real S = 5.125x22.5²/6 = 432.42 in³, C_F = 0.932, S_{adjusted} = 403.2 in³)

Check self weight: = $\gamma \cdot A = 32 \frac{lb}{ft^3} (115.3in^2) \left(\frac{1ft}{12in}\right)^2 = 26 \frac{lb}{ft}$ which is less than what was used.

We could try a smaller section, which would mean calculating a new self weight, then moment, then $S_{req'd}$ and comparing S_{actual} to $S_{req'd}$.

The lower self weight means a lower design moment, but the smaller C_F means a smaller allowed stress, so we might end up with the same section.

wrevised = 480 lb/ft + (26-40 lb/ft), Mrevised = 71,356 lb-ft, Sreq'd now = 356.8 in³ and the 5 1/8 x 22.5 is the choice for bending.

Of course, we need to satisfy shear and deflection criteria as well.

ىرى بىرى يەرىپىيە بىرىيەت بىرىيەر يەرىپىيە يەرىپىيە يەرىپىيەت بىرىي	ير الحد ا	1		L		أسعدنا	-		-	ا ا	والم		. 1	۰	1	- 4:4	ادغ	اسم		ال در	والشو	n Li	. ا. س	- L	. ما حد	~1-	. L	L				!					1.2						-:
	1) i		1				1.			~										1																
1 intration		56	2	8	302	ß	4	62	2	2	5	4 4	300			8	Ξ	494	8	1,051	4	2	5	5	S	4,000 4,004	68	8	87	5	349	2	2 2 2	2		972	84	800	27	3,280	5	S	ò
MOMENT OF			-	5	m	4	Ŷ	°	-	2	2	4 C	3.6			-	~	4		2	귀	5	2,4	m	6,1	ט ס ל ע		8,4	9,6	Ę	mil	15,3	2	5'61		ľ	-		3	ŝ	4	S.	o.
								• •	• I		-	-										.		- -		. .						1											1
wodulus, scr in 3		α	m	0i	4	0	5	m	0	m	وأه	πļα				0	¢!	R	0	9	γ	إب	0	-	0	א ע	2 00	0	Ņ	'n	4			Ω.		0		0	0	4	m	2	<u> </u>
WODILIED SECTION		18	8	42	57.4	25	ŝ	114	136	5	8		277			48.0	69	8	5	153	187	224	264	E I	354	403.2 455.5	510	569	630	69	102	831	40%	56		162	202	246	63	348.	4	3	22
						Ť.																1																			. [
	:																																										_
⁹ .ni A,A39A		8.8	3.4	8.1	2.8	7.5	2.2	6.9	1.0	S			75.0			38.4	5.1	3.8	1.5	6.6	0.0	4.6	ŝ	0.0	20	102.01		138.4	146.1	33.8	4	50.1	8.0/1	5		31.0	12	51.3	4.1	21.5	31.0	4 1 1 2	5
	E	-	61	^{C1}	[]	"	4	4	"	"	Ĩ				TDTH	["	4	Ľ,		č		۳İ	5	Υ	۲ŀ	= ?	-	12	7	-	ž	2	-p	~	'IDTH	1	Ĩ		-	1	-	÷.	
	Ĭ					-			-	-	-	. .			Ę		• • •	. ii		-	-	-	ł	-	-	1		1-				-	1		đ	1	Ľ					•	
	1	6	<u>م</u>	0	2	0	2	0	5	0	ہام		ماہ			2	0	S	0	ŝ	0	2	0	പ	مأه	n c	<u>م</u> ا	0	ŝ	0	S	0				0	S	0	S	0	'n	0	'n
DEPTH, d in.	3%	ø		o.	<u>0</u>	12	13	15	2	8	e¦∶	5 8	84.0		5%	1	ò	9	얻	₽	15.	2	8	의	2	0.22	5	5	8	ŝ	Ξ	R	허	8	۶ <i>%</i> "	15	12	15	12	18.0	?	2	22
بدر جند، می درومیزومانی، می م				1						_				١.			-				-		_		_	<u> </u>	<u>ا ـ</u>		1_	_			<u> </u>			i	Ì	i	i	ـ. ا	i	1	
							-																		•														- 1				

Example 2

Example Problem 10.20: Design of Wood Columns(Figure 10.66)

A 22'-tall glu-lam column is required to support a roof load (including snow) of 40 kips. Assuming $8\frac{3}{4}$ " in one dimension (to match the beam width above), determine the minimum column size if the top and bottom are pin supported.

Select from the following sizes:

$$8^{3}/_{4}^{"} \times 9^{"} (A = 78.75 \text{ in.}^{2})$$

 $8^{3}/_{4}^{"} \times 10^{1}/_{2}^{"} (A = 91.88 \text{ in.}^{2})$
 $8^{3}/_{4}^{"} \times 12^{"} (A = 105.00 \text{ in.}^{2})$

Solution:

Glu-lam column: ($F_c = 1650 \text{ psi}, E = 1.8 \times 10^6 \text{ psi}$) Try $8\frac{3}{4}'' \times 10\frac{1}{2}'' (A = 105.00 \text{ in.}^2)$

$$\frac{L_e}{d} = \frac{(22' \times 12 \text{ in./ft.})}{8.75 \text{ in.}}$$

$$= 30.2 < 50 \text{ (max. slenderness ratio)}$$

$$F_{cE} = \frac{0.418E}{(L_e/d)^2} = \frac{0.418(1.8 \times 10^6 \text{ lb./in.}^2)}{(30.2)^2} = 825 \text{ psi}$$

$$F_c^* \cong F_c C_D = (1650 \text{ psi}) \times (1.15) = 1900 \text{ psi}$$

$$\frac{F_{cE}}{F_c^*} = \frac{825}{1900} = 0.43$$

From Appendix Table 14: $C_p = 0.403$

$$F'_{c} = F^{*}_{c}C_{p} = (1900 \text{ lb./in.}^{2}) \times (0.403) = 765 \text{ psi}$$
$$P_{a} = F'_{c} \times A = (765 \text{ lb./in.}^{2}) \times (91.9 \text{ in.}^{2})$$
$$= 70,300 \text{ lb.} > 40,000 \text{ lb.}$$

Cycle again, trying a smaller, more economical section. Try $8^{3}/_{4}$ " × 9" ($A = 78.8 \text{ in.}^{2}$)

Since the critical dimension is still $8^{3}/_{4}$ ", the values for F_{cE} , F_{c}^{*} , and F_{c}^{\prime} all remain the same as in trial 1. The only change that affects the capability of the column is the available cross-sectional area.

$$\therefore P_a = F'_c \times A = (765 \text{ lb./in.}^2) \times (78.8 \text{ in.}^2)$$

= 60,300 lb.
$$P_a = 60.3 \text{ k} > 40 \text{ k}$$

Use $8\frac{3}{4}$ " × 9" glu-lam section.

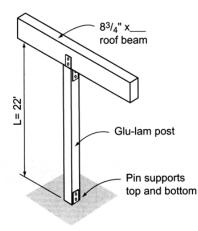


Figure 10.66 Glu-lam column design.