Wood Design

Notation:

Nota	tio	n:
а	=	name for width dimension
A	=	name for area
A _{reg'd}	-adj	= area required at allowable stress
1	0	when shear is adjusted to include
		self weight
b	=	width of a rectangle
	=	name for height dimension
c_1	=	coefficient for shear stress for a
		rectangular bar in torsion
C_C	=	curvature factor for laminated
		arches
C_D	=	load duration factor
C_{fu}	=	flat use factor for other than decks
C_F	=	size factor
C_H	=	shear stress factor
C_i	=	incising factor
C_L	=	beam stability factor
C_M	=	wet service factor
C_p	=	column stability factor for wood
-		design
C_r	=	repetitive member factor for wood
		design
C_V	=	volume factor for glue laminated
		timber design
C_t	=	temperature factor for wood design
d	=	name for depth
d_{min}	=	dimension of timber critical for
		buckling
DL	=	shorthand for dead load
E	=	modulus of elasticity
f		stress (strength is a stress limit)
f_b		bending stress
$f_{from ta}$		= tabular strength (from table)
f_p		bearing stress
f_r		radial stress for a glulam timber
f_v		shear stress
		maximum shear stress
F_b		tabular bending strength
		allowable bending stress
F_{b}^{\prime}	=	allowable bending stress (adjusted)
F_{c}	=	tabular compression strength
-		parallel to the grain
F '	=	allowable compressive stress
C		(adjusted)
		(aujusicu)

F^*c	= intermediate compressive stress for
	column design dependent on load
	duration
F_{cE}	= theoretical allowed buckling stress
$F_{c\perp}$	= tabular compression strength
	perpendicular to the grain
F_p	= tabular bearing strength parallel to
1	the grain
	= allowable bearing stress
F_R	= allowable radial stress
F_t	= tabular tensile strength
F_u	= ultimate strength
F_v	= tabular bending strength
	= allowable shear stress
h	= height of a rectangle
Ι	= moment of inertia with respect to
	neutral axis bending
I _{trial}	= moment of inertia of trial section
I _{req'd}	= moment of inertia required at
	limiting deflection
I_y	= moment of inertia with respect to an
	y-axis
J	= polar moment of inertia
K_{cE}	= material factor for wood column
	design
L_e	= effective length that can buckle for
	column design, as is ℓ_e
L	= name for length or span length
LL	= shorthand for live load
LRFI	D = load and resistance factor design
М	= internal bending moment
	= maximum internal bending moment
M_{max}	adj = maximum bending moment
	adjusted to include self weight
Р	= name for axial force vector
R	= radius of curvature of a deformed
	beam
	= radius of curvature of a laminated
	arch
G	= name for a reaction force
S	= section modulus
$S_{req'd}$	= section modulus required at
	allowable stress

$S_{req'd-adj}$ = section modulus required at	w_{selfwt} = name for distributed load from self				
allowable stress when moment is	weight of member				
adjusted to include self weight	$\Delta_{allowable}$ = allowable beam deflection				
T = torque (axial moment)	Δ_{limit} = allowable beam deflection limit				
V = internal shear force	Δ_{max} = maximum beam deflection				
V_{max} = maximum internal shear force	κ = slenderness ratio limit for long				
$V_{max-adj}$ = maximum internal shear force	columns				
adjusted to include self weight	γ = density or unit weight				
w = name for distributed load	ρ = radial distance				

Wood or Timber Design

Structural design standards for wood are established by the *National Design Specification (NDS)* published by the National Forest Products Association. There is a combined specification (from 2005) for **Allowable** Stress Design and limit state design (LRFD).

Tabulated wood strength values are used as the base allowable strength (ASD) and modified by appropriate adjustment factors: $f = C_D C_M C_F ... \times f_{from table}$

Adjustment Factors

CD	load duration factor
----	----------------------

- C_M wet service factor (1.0 dry < 16% moisture content)
- Ct temperature factor (at high temperatures strength decreases)
- C_L beam stability factor (for beams without full lateral support)
- C_F size factor for visually graded sawn lumber and round timber > 12" depth

$$C_F = (12/d)^{\frac{1}{9}} \le 1.0$$

- FACTOR FERMANENT-DL (Co-0.9) 1.9 DURATION SNOW *|.*8 FLOOR LL 1.7 1.6 6-16 45 14 13 LOAD = 1.25 1.2 $C_{n} = -1.15$ į., C. -1.0 1.0 0.9 ٤ ž 550 NWN] Ŕ 1 18 QAY 148 ð ŝ DURATION OF LOAD (TIME)
- C_V volume factor for glued laminated timber (similar to C_F)
- C_{fu} flat use factor (excluding decking)
- C_r repetitive member factor (1.15 for three or more parallel members of Dimension lumber spaced not more than 24 in. on center, connected together by a loaddistributing element such as roof, floor, or wall sheathing)
- C_c curvature factor for glued laminated timber (1.0 straight & cambered) $t/R \le 1/100$ for hardwoods & southern pine or 1/125 other softwoods

 $C_{a} = 1 - 2000(t/R)^{2}$

- C_i incising factor (0.85 incised sawn lumber, 1 for sawn lumber not incised and glulam)
- C_H shear stress factor (amount of splitting)
- C_P column stability factor (1.0 for fully supported columns)

Design Values

- $F_{\rm b}$: bending stress
- F_t: tensile stress
- F_v: horizontal shear stress
- $F_{c\perp}$: compression stress (perpendicular to grain)
- F_c: compression stress (parallel to grain)
- E: modulus of elasticity
- F_p: bearing stress (parallel to grain)

Wood is significantly weakest in shear and strongest along the direction of the grain (tension and compression).

Load Combinations and Deflection

The critical load combination is determined by the largest of either:

 $\frac{dead \ load}{0.9} \ or \frac{(\ dead \ load + any \ combination \ of \ live \ load \)}{C_D}$

The deflection limits may be increased for less stiffness with total load: LL + 0.5(DL)

Criteria for Beam Design

Allowable normal stress or normal stress from LRFD should not be exceeded:

Knowing M and F_b, the minimum section modulus fitting the limit is:

$$S_{req'd} \ge \frac{M}{F_h}$$

Besides strength, we also need to be concerned about *serviceability*. This involves things like limiting deflections & cracking, controlling noise and vibrations, preventing excessive settlements of foundations and durability. When we know about a beam section and its material, we can determine beam deformations.

Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Computer applications are very helpful.

Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a *non-prismatic* member, the stress varies with the cross section AND the moment.

Deflections

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well.

Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range. The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.

Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.

Use	LL only	DL+LL	
Roof beams:			
Industrial	L/180	L/120	
Commercial			
plaster ceiling	L/240	L/180	
no plaster	L/360	L/240	
Floor beams:			
Ordinary Usage	L/360	L/240	
Roof or floor (damageable	e elements)	L/480	

Lateral Buckling

With compression stresses in the top of a beam, a sudden "popping" or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger I_y .

Beam Loads & Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the *tributary area* that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element *ad infinitum*, to the ground.

Design Procedure

The intent is to find the most light weight member satisfying the section modulus size.

- 1. Know F_{all} for the material or F_U for LRFD.
- 2. Draw V & M, finding M_{max} .

ARCH 631

- 3. Calculate S_{req'd}. This step is equivalent to determining $f_b = \frac{M_{\text{max}}}{S} \le F'_b$ $S = \frac{bh^2}{c}$
- 4. For rectangular beams
 - For timber: use the section charts to find S that will work and remember that the beam self weight will increase S_{reg'd.}

****Determine the "updated" V_{max} and M_{max} including the beam self weight, and verify that the updated S_{reg'd} has been met.*****

5. Consider lateral stability.

6. Evaluate horizontal shear stresses using V_{max} to determine if $f_v \le F'_v$

For rectangular beams

$$f_{v-\max} = \frac{3V}{2A} = 1.5 \frac{V}{A}$$

- 7. Provide adequate bearing area at supports:
- 8. Evaluate shear due to torsion

$$f_{\nu} = \frac{T\rho}{J} \text{ or } \frac{T}{c_1 a b^2} \le F_{\nu}'$$

 $f_p = \frac{P}{\Lambda} \le F'_p$

(circular section or rectangular)

- 9. Evaluate the deflection to determine if $\Delta_{maxLL} \leq \Delta_{LL-allowed}$ and/or $\Delta_{maxTotal} \leq \Delta_{Total-allowed}$
- **** note: when $\Delta_{calculated} > \Delta_{limit}$, $I_{required}$ can be found with: and S_{req'd} will be satisfied for similar self weight *****

$$I_{req'd} \ge \frac{\Delta_{too \, big}}{\Delta_{lim \, it}} I_{trial}$$

FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

Column Design

National Design Specification for Wood Construction (1992):

Any slenderness ratio, $l_e/d \le 50$:

$$f_c = \frac{P}{A} \le F_c'$$

$$F_c' = F_c(C_D)(C_M)(C_t)(C_F)(C_p)$$

For preliminary column design:

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

Procedure

1. Obtain F'_c

find l_e/d or assume $(l_e/d \le 50)$ compute $F_{cE} = \frac{K_{cE}E}{\binom{l_e}{d}^2}$ with $K_{cE} = 0.3$ for sawn, = 0.418 for glu-lam compute $F_c^* \cong F_c C_D$ with $C_D = 1$, normal, $C_D = 1.25$ for 7 day roof... find F_{cE}/F_c^* and get C_p

2. Select a section

If the load and area of the column are known, set the stress equal to the allowable stress, and solve for l_{e} , l, or d_{min}

If the load and length of the column are known, set the stress equal to the allowable stress, and solve for A or d_{min} and select a section that satisfies the values found.

3. Continue from 2 until F'_c is satisfied: $F'_c = F^*_c C_p$

Alternate Column Allowable Stress

For intermediate length columns with 11<L/d< κ , where $\kappa = 0.67 \sqrt{\frac{E}{F_c}}$:

$$F_{c}' = F_{c} \left\{ 1 - \left(\frac{1}{3} \left[\left(\frac{L_{e}}{d} \right) \kappa \right]^{4} \right\} \right\}$$

For *long* columns with $L/d > \kappa$, and <u>an assumed safety factor of 2.73</u>: the allowable stress is:

$$F_c = \frac{0.3E}{\left(\frac{L_e}{d}\right)^2}$$

Table 9.3Column stability factor C_p .

Statics and Strength of Materials for Architecture and Building Construction, 2nd ed., Onouye & Kane

Column Stability Factor Cp

	$\mathbf{P}_{p}^{\mathbf{n}} = \mathbf{C}_{p} \cdot \mathbf{F}_{c}^{\mathbf{n}}$	$F_{CE} = \frac{.30 \text{ E}}{(1/\text{d})^2}$ for sawn posts	$F_{CE} = \frac{418 E}{(1/d)^2}$ for Glu-Lam posts
$\frac{F_{CE}}{F_{C}^{e}} = \begin{array}{c} \text{Sawn} & \text{Glu-Lam} \\ \hline F_{C}^{e} & C_{p} & C_{p} \end{array}$	$ \begin{array}{ c c c }\hline F_{CE} & Sawn & Glu-Lam \\\hline F_{C}^{\bullet} & C_{p} & C_{p} \end{array} $	$ \begin{array}{ c c c }\hline F_{CF} & Sawn & Glu-Lam \\\hline F_{C}^{*} & C_{p} & C_{p} \end{array} $	$ \begin{array}{c c} F_{CE} & Sawn & Glu-Lam \\ \hline F_{C}^{*} & C_{p} & C_{p} \end{array} $
$\begin{array}{ccccccc} 0.00 & 0.000 & 0.000 \\ 0.01 & 0.010 & 0.010 \\ 0.02 & 0.020 & 0.320 \\ 0.03 & 0.030 & 0.030 \\ 0.04 & 0.040 & 0.040 \\ 0.05 & 0.049 & 0.050 \\ 0.06 & 0.059 & 0.060 \\ 0.07 & 0.069 & 0.069 \\ 0.08 & 0.079 & 0.079 \\ 0.09 & 0.088 & 0.089 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.40 0.894 0.940 2.45 0.897 0.941 2.50 0.899 0.943 2.55 0.901 0.944 2.60 0.904 0.946 2.65 0.906 0.947 2.70 0.908 0.949 2.75 0.910 0.950 2.80 0.912 0.951 2.85 0.914 0.952
0.10 0.098 0.099 0.11 0.107 0.109 0.12 0.117 0.118 0.13 0.126 0.128 0.14 0.136 0.138 0.15 0.145 0.147 0.16 0.154 0.157 0.17 0.164 0.167 0.18 0.173 0.176 0.19 0.182 0.186	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.40 0.793 0.862 1.42 0.796 0.865 1.44 0.800 0.868 1.46 0.803 0.871 1.48 0.807 0.874 1.50 0.810 0.877 1.52 0.813 0.879 1.54 0.816 0.882 1.56 0.819 0.884 1.58 0.822 0.887	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccccccc} 0.20 & 0.191 & 0.195 \\ 0.21 & 0.200 & 0.205 \\ 0.22 & 0.209 & 0.214 \\ 0.23 & 0.218 & 0.224 \\ 0.24 & 0.227 & 0.233 \\ 0.25 & 0.235 & 0.242 \\ 0.26 & 0.244 & 0.252 \\ 0.27 & 0.253 & 0.261 \\ 0.28 & 0.261 & 0.270 \\ 0.29 & 0.270 & 0.279 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.60 0.825 0.889 1.62 0.827 0.891 1.64 0.830 0.893 1.66 0.832 0.895 1.68 0.835 0.897 1.70 0.837 0.899 1.72 0.840 0.901 1.74 0.842 0.903 1.76 0.844 0.904 1.78 0.846 0.906	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccc} 0.30 & 0.278 & 0.288 \\ 0.31 & 0.287 & 0.297 \\ 0.32 & 0.295 & 0.306 \\ 0.33 & 0.304 & 0.315 \\ 0.34 & 0.312 & 0.324 \\ 0.35 & 0.320 & 0.333 \\ 0.36 & 0.328 & 0.342 \\ 0.37 & 0.336 & 0.351 \\ 0.38 & 0.344 & 0.360 \\ 0.39 & 0.352 & 0.368 \\ \end{array}$	$\begin{array}{ccccccc} 0.90 & 0.653 & 0.718 \\ 0.91 & 0.658 & 0.722 \\ 0.92 & 0.661 & 0.727 \\ 0.93 & 0.665 & 0.731 \\ 0.94 & 0.669 & 0.735 \\ 0.95 & 0.673 & 0.740 \\ 0.96 & 0.677 & 0.744 \\ 0.97 & 0.680 & 0.748 \\ 0.98 & 0.684 & 0.752 \\ 0.99 & 0.688 & 0.756 \\ \end{array}$	1.80 0.849 0.908 1.82 0.851 0.909 1.84 0.853 0.911 1.86 0.855 0.912 1.88 0.857 0.914 1.90 0.858 0.915 1.92 0.860 0.916 1.94 0.862 0.919 1.98 0.864 0.919	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.40 0.360 0.377 0.41 0.367 0.386 0.42 0.375 0.394 0.43 0.383 0.403 0.44 0.390 0.411 0.45 0.398 0.420 0.46 0.405 0.428 0.46 0.4012 0.436 0.46 0.402 0.428 0.47 0.412 0.436 0.48 0.419 0.444 0.49 0.427 0.453	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.00 0.867 0.921 2.02 0.869 0.922 2.04 0.870 0.924 2.06 0.872 0.925 2.08 0.874 0.926 2.10 0.875 0.927 2.12 0.876 0.929 2.16 0.879 0.930 2.18 0.881 0.931	4.40 0.948 0.972 4.45 0.949 0.973 4.50 0.949 0.973 4.55 0.950 0.974 4.60 0.950 0.974 4.65 0.951 0.974 4.70 0.952 0.975 4.75 0.952 0.975 4.80 0.953 0.975
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.20 0.882 0.932 2.22 0.883 0.932 2.24 0.885 0.933 2.26 0.886 0.934 2.28 0.887 0.935 2.30 0.888 0.936 2.32 0.889 0.937 2.34 0.891 0.937 2.36 0.892 0.938 2.38 0.893 0.939	4.90 0.954 0.976 5.00 0.955 0.976 6.00 0.963 0.981 8.00 0.973 0.986 10.00 0.979 0.989 20.00 0.990 0.995 40.00 0.995 0.997 60.00 0.997 0.998 100.00 0.997 0.998 100.00 0.998 0.999 200.00 0.999 0.999

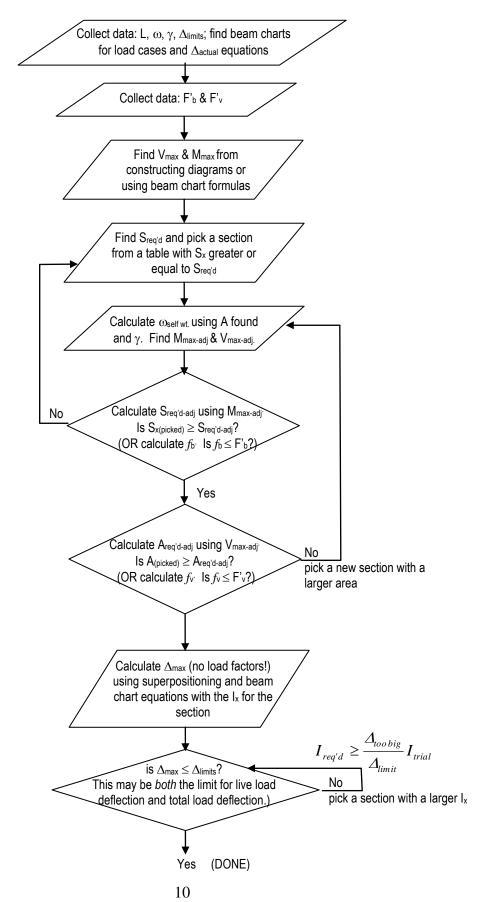
Table developed and permission for use granted by Professor Ed Lebert, Dept. of Architecture, University of Washington.

considerations will permit, the finished sizes of structural glued laminated timber as given in Table B constitute normal industry practice. Industry standards do, however, permit the use of any depth or width of glued laminated timber. Dimension lumber of 1½ in. net thickness is normally used for laminating straight members. The modified section modulus includes size factor (C _F), and no further reduction of bending stress for size is needed.											
	, mooniee se						*				
•											
								* . ₂			
		7 ".		Z @							
		<u>ğ</u> .c		1		SECTION 5, SC _F in. ³		1 · · · ·		SECTION SC In 3	
مر	۵.	ក្តស្វ	ŗ.	-	۰.	u u u u u u u u u u u u u u u u u u u	Ъ́с	i e	. (្អរអ្នក	۳.
d T	AREA, A in. ^e	C S	5	DEPTH, d in.	AREA, A in. [®]	8 S	E Z	Verin, a in.	AREA, A In."	G 2	E Z
Ę	₹	DOIE	STILA	Ŧ	Ś	ED	ME	Ę	₹	LEO	E S S
DEPTH,	ARE	MODIFIED SECTION MODULUS, SCF In.3	MOMENT C INERTIA, I i	DEP	ARE	MODIFIED S MODULUS,	MOMENT OF INERTIA, 1 In.4	Ę	AR	MODIFIED S MODULUS,	MOMENT OF INERTIA, I In-4
3%" V				24.0	162.0	600.0	7,776	54.0	472.5	3,598.0	114,81
				25.5	172.1	672.8	9,327	55.5	485.6	3,789.1	124,65
6.0	<u>18.8</u> 23.4	18.8 29.3	56 110	27.0 28.5	182.3 192.4	749.5	11,072	57.0 58.5	498.8 511.9	3,984.9	135,03
<u>7.5</u> 9.0	23.4	42.2	190	30.0	202.5	914.5	15,188	60.0	525.0	4,185.3	145,98
10.5	32.8	57.4	302	31.5	212.6	1,002.8	17,581			1,370.3	101,00
12.0	37.5	75.0	450	33.0	222.8	1,094.9	20,215	10¾″ W	THIDTH		<u></u>
13.5	42.2	93.7	641	34.5	232.9	1,190.8	23,098	15.0	161.3	393.3	- 3,09
15.0	46.9	114.3	879	36.0	243.0	1,290.5	26,244	16.5	177.4	470.8	4,0
16.5 18.0	51.6	136.9	1,170	37.5	253.1 263.3	1,393.9	29,663	18.0	193.5 209.6	554.9 645.5	5,2
19.5	60.9	187.6	1,931	40.5	203.5	1,612.0	37,367	21.0	225.8	742.5	8,2
21.0	65.6	215.8	2,412	42.0	283.5	1,726.6	41,674	22.5	241.9	845.8	10,2
22.5	70.3	245.9	2,966	43.5	293.6	1,845.0	46,301	24.0	258.0	955.5	12,3
24.0	75.0	277.8	3,600	45.0	303.8	1,967.0	51,258	25.5	274.1	1,071.4	14,8
5%" W	/IDTH			46.5	313.9	2,092.6	56,556	27.0	290.3 306.4	1,193.6	17,6
7.5	38.4	48.0	180	1		2,222.0	1 02,200	1 30.0	322.5	1,456.4	24,1
9.0	45.1	69.2	311	8¾″ W	/IDTH	1997 - 1997 -		31.5	338.6	1,597.0	28,0
10.5	53.8	94.2	494	12.0	105.0	210.0	1,260	33.0	354.8	1,743.7	32,1
12.0	61.5	123.0	738	13.5	118.1	262.3	1,794	34.5	370.9	1,896.4	36,7
13.5	69.2	153.6	1,051	15.0	131.3	320.1	2,461	36.0	403.1	2,055.2	41,7
15.0 16.5	76.9 84.6	224.5	1,441	18.0	157.5	451.7	4,252	39.0	419.3	2,390.6	53,1
18.0	92.3	264.6	2,491	19.5	170.6	525.4	5,407	40.5	435.4	2,567.3	59,5
19.5	99.9	307.7	3,167	21.0	183.8	604.4	6,753	42.0	451.5	2,749.8	56,3
21.0	107.6	354.0	3,955	22.5	196.9	688.5	8,306	43.5	467.6	2,938.3	73,7
22.5	115.3	403.2	4,865	24.0	210.0	777.7	10,080	45.0	483.8	3,132.6	81,6
24.0	123.0	455.5 510.8	5,904	25.5	223.1	872.1 971.5	12,091	46.5	516.0	3,538.7	99,0
25.5 27.0	130.7	569.0	8,406	28.5	230.3	1,076.0	16,880	49.5	532.1	3,750.5	108,6
28.5	146.1	630.2	9,887	30.0	262.5	1,185.5	19,688	51.0	548.3	3,968.0	
30.0	153.8	694.3	11,531	31.5	275.6	1,299.9	22,791	52.5	564.4	4,191.4	129,6
31.5	161.4	761.4	13,349	33.0	288.8	1,419.3	26,204	54.0	580.5	4,420.4	141,0
33.0	169.1	831.3	15,348	34.5	<u>301.9</u> 315.0	1,543.6	29,942	55.5	612.8	4,055.2	165,9
34.5 36.0	175.8	904.1 979.8	19,926	37.5	328.1	1,806.9	38,452	58.5	628.9	5,141.9	
		,,,,,	.,,,20	39.0	341.3	1,945.9	43,253	60.0	645.0	5,398.8	193,5
6%" W	/IDTH			40.5	354.4	2,089.6	48,439	61.5	661.1	5,651.4	
120	<u>81.0</u>	162.0	972	42.0	367.5	2,238.2	54,022	63.0	677.3	5,914.5	224,0
13.5	91.1	202.4	. 1,384	43.5	380.6	2,391.6	60,020	64.5	693.4	6,183.3 6,457.8	257,5
150	101.3	246.9 295.6	<u>1,898</u> 2,527	45.0	393.8 406.9	2,549.8	66,445 73,314	67.5	725.6	6,737.8	275,5
16.5 18.0	111.4	348.4	3,280	48.0	420.0	2,880.3	80,640	69.0	741.8	7,023.4	
19.5	121.5	405.3	4,171	49.5	433.1	3,052.7	88,439	70.5	757.9	7,314.6	
21.0	141.8	466.2	5,209	51.0	446.3	3,229.8	96,725	72.0	774.0	7,611.3	334,3

Glue Laminated Timber

These members come in nominal widths of 3, 4, 6, 8, 10, 12, 14 and 16 inches. The depth can exceed 12 inches, so the size factor, C_F must be used. The formula is based on a uniformly loaded beam, simply supported with an l/d ratio of 21. With a single midspan load, multiply C_F by 1.078. With two loads at third points, multiply C_F by 0.968. (Note: the table on page 4 provides section modulus that include C_F).

$$C_F = (12/d)^{\frac{1}{9}} \le 1.0$$


If a glulam is subject to lateral buckling, the slenderness factor is used, and the size factor is not.

Bending of a curved glulam causes radial stresses (like membrane pressures) in tension and compression which can be evaluated for an arc with a radius of R at the neutral axis from:

$$f_r = \frac{3M}{2Rbd}$$
 for constant rectangular cross section

$$f_r \leq F_R$$
 where $F_R = \begin{cases} F_{C\perp} \\ \frac{1}{3}F_V \end{cases}$

ASD Beam Design Flow Chart

