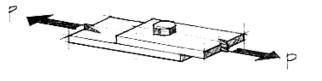
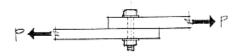
Connection and Tension Member Design

Notation:

Α	= area (net = with holes, bearing = in	L'	=
	contact, etc)		D
A_e	= effective net area found from the	LRFI	D :
	product of the net area A_n by the	n	=
	shear lag factor U	Ν	=
A_b	= area of a bolt		
A_g	= gross area, equal to the total area		=
	ignoring any holes		
A_{gv}	= gross area subjected to shear for	p	=
	block shear rupture	P	=
A_n	= net area, equal to the gross area	R	=
	subtracting any holes, as is A_{net}		
A_{nt}	= net area subjected to tension for	R_a	=
	block shear rupture	R_n	=
A_{nv}	= net area subjected to shear for block		
	shear rupture	R_u	=
ASD	= allowable stress design		
d	= diameter of a hole	S	=
f_p	= bearing stress (see P)		
f_t	= tensile stress	S	=
f_v	= shear stress		
Jv			
-	ector = shear force capacity per	SC	=
-		SC t	=
-	e_{ctor} = shear force capacity per		=
Fconne	ector = shear force capacity per connector	t	=
Fconne	ector = shear force capacity per connector = nominal tension or shear strength of	t t _w	
F_{conno} F_n F_u	 <i>ector</i> = shear force capacity per connector nominal tension or shear strength of a bolt 	$t t_w T V$	= = = =
F_{conno} F_n F_u	 <i>ector</i> = shear force capacity per connector = nominal tension or shear strength of a bolt = ultimate stress prior to failure 	$t t_w T$	= = = itudi
F_{conno} F_n F_u F_{EXX}	 ector = shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength 	t t _w T V V _{longi}	= = = itudi
F_{conno} F_n F_u F_{EXX} F_y F_y F_{yw}	 ector = shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength 	t t _w T V V _{longi}	= = = : : : : : : : : : : : : : : : : :
F_{conno} F_n F_u F_{EXX} F_y	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material 	t t _w T V V V _{longi} U	= = = : : : : : : : : : : : : : : : : :
F_{connu} F_n F_u F_{EXX} F_y F_{yw} g	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes 	t t _w T V V V _{longi} U	= = = : : : : : : : : : : : : : : : : :
F_{connu} F_n F_u F_{EXX} F_y F_{yw} g	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to 	t t_w T V V_{longi} U U_{bs}	= = = : : : : : : : : : : : : : : : : :
F_{conno} F_n F_u F_{EXX} F_y F_{yw} g I	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to neutral axis bending 	t t_w T V V_{longi} U U_{bs}	= = = :itudi = =
F_{conno} F_n F_u F_{EXX} F_y F_{yw} g I	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to neutral axis bending distance from outer face of W 	t t _w T V V _{longi} U U _{bs} X	= = = :itudi = = =
F_{conno} F_{n} F_{u} F_{EXX} F_{y} F_{yw} g I k	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to neutral axis bending distance from outer face of W flange to the web toe of fillet 	t t_w T V V_{longi} U U_{bs}	= = = : : : : : : : : : : : : : : : : :
F _{conne} F _n F _u F _y F _{yw} g I k l	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to neutral axis bending distance from outer face of W flange to the web toe of fillet name for length 	t t_w T V V_{longi} U U U U X y π	= = = itudi = = = =
F _{conne} F _n F _u F _{yw} F _{yw} g I k l L	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to neutral axis bending distance from outer face of W flange to the web toe of fillet name for length clear distance between the edge of a 	t t _w T V V _{longi} U U bs X	= = = : : : : : : : : : : : : : : : : :
F _{conne} F _n F _u F _{yw} F _{yw} g I k l L	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to neutral axis bending distance from outer face of W flange to the web toe of fillet name for length 	t t_w T V V_{longi} U U U U X y π ϕ	= = = = = = = = = = =
F _{conne} F _n F _u F _{yw} F _{yw} g I k l L	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to neutral axis bending distance from outer face of W flange to the web toe of fillet name for length clear distance between the edge of a hole and edge of next hole or edge 	t t_w T V V_{longi} U U_{bs} X y π ϕ γ	= = = itudi = = = = = = =
F _{conne} F _n F _u F _{yw} F _{yw} g I k l L	 shear force capacity per connector nominal tension or shear strength of a bolt ultimate stress prior to failure yield strength of weld material yield strength yield strength of web material gage spacing of staggered bolt holes moment of inertia with respect to neutral axis bending distance from outer face of W flange to the web toe of fillet name for length clear distance between the edge of a hole and edge of next hole or edge of the connected steel plate in the 	t t_w T V V_{longi} U U U U X y π ϕ	= = = itudi = = = = = = = =


L'	- length of an angle in a connector
L	= length of an angle in a connector
IDE	with staggered holes $D = \log d$ and resistance factor design
	D = load and resistance factor design
n	= number of connectors across a joint
Ν	 bearing length on a wide flange steel section
	 bearing type connection with threads included in shear plane
n	= pitch of connector spacing
p P	= name for axial force vector, as is T
r R	
Λ	= generic load quantity (force, shear,
D	moment, etc.) for LRFD design
R_a	= required strength (ASD)
R_n	= nominal value (capacity) to be
	multiplied by ϕ
R_u	= factored design value for LRFD
	design
S	= longitudinal center-to-center spacing
	of any two consecutive holes
S	= allowable strength per length of a
	weld for a given size
SC	= slip critical bolted connection
t	= thickness of a hole or member
t_w	= thickness of web of wide flange
Т	= throat size of a weld
V	= internal shear force
V_{long}	itudinal = longitudinal shear force
U	= shear lag factor for steel tension
	member design
U_{bs}	= reduction coefficient for block
	shear rupture
X	= bearing type connection with
	threads excluded from the shear
	plane
у	= vertical distance
π	= pi (3.1415 radians or 180°)
ϕ	= resistance factor
T	= diameter symbol
1/	= load factor in LRFD design
γ	_
Ω	= safety factor for ASD

 $\Sigma =$ safety factor for ASI $\Sigma =$ summation symbol


Connections

Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column. Steel construction accomplishes this with bolt and welds. Wood construction uses nails, bolts, shear plates, and split-ring connectors.

Single Shear - forces cause only one shear "drop" across the bolt.

(a) Two steel plates bolted using one bolt.

(b) Elevation showing the bolt in shear.

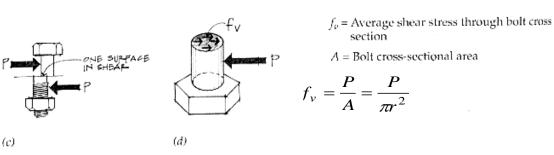
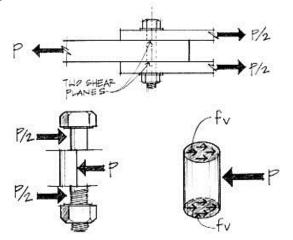



Figure 5.11 A bolted connection—single shear.

Double Shear - forces cause two shear changes across the bolt.

$$f_v = \frac{P}{2A} = \frac{P}{2\pi r^2}$$

(two shear planes)

Free-body diagram of middle section of the bolt in shear. Figure 5.12 A bolted connection in double shear.

<u>Bearing of a Bolt on a Bolt Hole</u> – The bearing surface can be represented by *projecting* the cross section of the bolt hole on a plane (into a rectangle).

$$f_p = \frac{P}{A} = \frac{P}{td}$$

$$P^{\text{rojected bearing area}}$$

$$P^{\text{rojected bearing area}}$$

Bearing stress on plate.

Horizontal Shear in Composite Beams

Typical connections needing to resist shear are plates with nails or rivets or bolts in composite sections or splices.

The pitch (spacing) can be determined by the capacity in shear of the connector(s) to the shear flow over the spacing interval, p.

$$\frac{V_{longitudimal}}{p} = \frac{VQ}{I} \qquad \qquad V_{longitudimal} = \frac{VQ}{I} \cdot p$$

УÅ

where

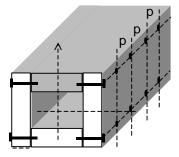
$$nF_{connector} \ge rac{VQ_{connected area}}{I} \cdot p$$

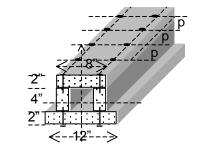
p = pitch length

n = number of connectors connecting the connected area to the rest of the cross section

F = force capacity in one connector

 $Q_{\text{connected area}} = A_{\text{connected area}} \times y_{\text{connected area}}$

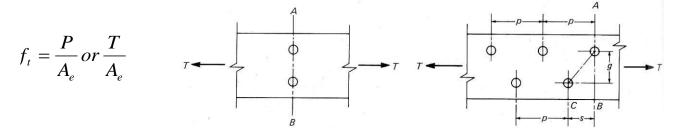

 $y_{\text{connected area}} = \text{distance from the centroid of the connected area to the neutral axis}$


Connectors to Resist Horizontal Shear in Composite Beams

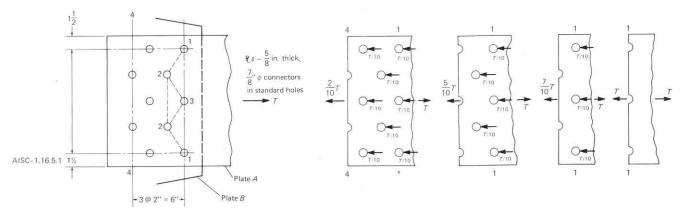
Even vertical connectors have shear flow across them.

The spacing can be determined by the capacity in shear of the connector(s) to the shear flow over the spacing interval, p.

$$p \leq \frac{nF_{connector}I}{VQ_{connected area}}$$



Tension Member Design


In tension members, there may be bolt holes that reduce the size of the cross section.

Effective Net Area:

The smallest effective are must be determined by subtracting the bolt hole areas. With staggered holes, the shortest length must be evaluated.

A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.

Connections in Wood

Connections for wood are typically mechanical fasteners. Shear plates and split ring connectors are common in trusses. Bolts of metal bear on holes in wood, and nails rely on shear resistance transverse and parallel to the nail shaft.

Bolted Joints

Stress must be evaluated in the member being connected using the load being transferred and the reduced cross section area called *net area*. Bolt capacities are usually provided in tables and take into account the allowable shearing stress across the diameter for *single* and *double shear*, and the allowable bearing stress of the connected material based on the direction of the load with respect to the grain (parallel or perpendicular). Problems, such as ripping of the bolt hole at the end of the member, are avoided by following code guidelines on minimum edge distances and spacing.

Nailed Joints

Because nails rely on shear resistance, a common problem when nailing is splitting of the wood at the end of the member, which is a shear failure. Tables list the shear force capacity per unit length of embedment per nail. Jointed members used for beams will have shear stress across the connector, and the pitch spacing, p, can be determined from the shear stress equation when the capacity, F, is known.

Other Connectors

Screws - Range in sizes from #6 (0.138 in. shank diameter) to #24 (0.372 in. shank diameter) in lengths up to five inches. Like nails, they are best used laterally loaded in side grain rather than in withdrawal from side grain. Withdrawal from end is not permitted.

Lag screws (or bolts) – Similar to wood screw, but has a head like a bolt. It must have a load hole drilled and inserted along with a washer.

Split ring and shear plate connectors – Grooves are cut in each piece of the wood members to be joined so that half the ring is in each section. The members are held together with a bolt concentric with the ring. Shear plate connectors have a central plate within the ring.

Splice plates – These are common in pre-manufactured joists and consist of a sheet of metal with punched spikes.

Framing seats & anchors - for instance, joist hangers and post bases...

Connections in Steel

The limit state for connections depends on the loads:

- 1. tension yielding
- 2. shear yielding
- 3. bearing yielding
- 4. bending yielding due to eccentric loads
- 5. rupture

High strength bolts resist shear (primarily), while the connected part must resist yielding and rupture.

Welds must resist shear stress. The design strengths depend on the weld materials.

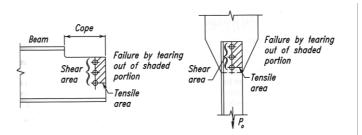


Fig. C-J4.1. Failure for block shear rupture limit state.

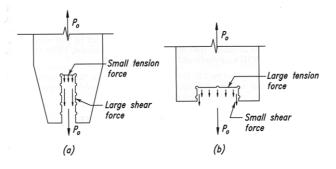
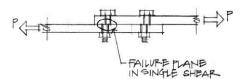
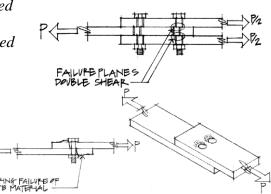


Fig. C-J4.2. Block shear rupture in tension.

Note Set 17.1

Bolted Connection Design


Bolt designations signify material and type of connection where


SC: slip critical

- N: bearing-type connection with bolt threads *included* in shear plane
- X: bearing-type connection with bolt threads *excluded* from shear plane
- A307: similar in strength to A36 steel (also known as ordinary, common or unfinished bolts)

A325: high strength bolts (Group A)

A490: high strength bolts (higher than A325, Group B)

 ϕR_n

- Bearing-type connection: no frictional resistance in the contact surfaces is assumed and slip between members occurs as the load is applied. (Load transfer through bolt only).
- Slip-critical connections: bolts are torqued to a high tensile stress in the shank, resulting in a clamping force on the connected parts. (Shear resisted by clamping force).Requires inspections and is useful for structures seeing dynamic or fatigue loading.

Bolts rarely fail in **bearing**. The material with the hole will more likely yield first.

For the determination of the net area of a bolt hole the width is taken as 1/16 "greater than the nominal dimension of the hole. Standard diameters for bolt holes are 1/16" larger than the bolt diameter. (This means the net width will be 1/8" larger than the bolt.)

Design for Bolts in Bearing, Shear and Tension

Available shear values are given by bolt type, diameter, and loading (Single or Double shear) in AISC manual tables. Available shear value for slip-critical connections are given for limit states of serviceability or strength by bolt type, hole type (standard, short-slotted, long-slotted or oversized), diameter, and loading. Available tension values are given by bolt type and diameter in AISC manual tables.

Available bearing force values are given by bolt diameter, ultimate tensile strength, F_u , of the connected part, and thickness of the connected part in AISC manual tables.

For shear OR tension (same equa	<u>tion) in bolts:</u>	$R_a \leq R_n / \Omega$ or $R_u \leq$
		where $R_{\mu} = \Sigma \gamma_i R_i$
 single shear (or tension) 	$R_n = F_n A_b$	

• double shear $R_n = F_n 2A_b$

 ϕ = the resistance factor where

 F_n = the nominal tension or shear strength of the bolt A_b = the cross section area of the bolt

$$\phi = 0.75 (LRFD)$$
 $\Omega = 2.00 (ASD)$

Ň	Nominal Bolt Diameter, d, in.	Diamete	er, d, in.	The second	w.	5/8	3	3/4	12	8/2	a pri di la	9
	Nominal Bolt Area, in. ²	Solt Area ,	in. ²		0.5	0.307	0.4	0.442	0.6	0.601	0.7	0.785
ASTM Desig.	Thread	F _{nv} /Ω (ksi)	φF _{nv} (ksi)	Load-	r _n /Ω	φſ'n	r _n /Ω	φĩn	r₀/Ω	φſ'n	r _n /Ω	¢ſn
B		ASD	LRFD	P	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group	z	27.0	40.5	νD	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.8 63.6
A	x	34.0	51.0	s a	10.4 20.9	15.7 31.3	15.0 30.1	22.5	20.4 40.9	30.7 61.3	26.7 53.4	40.0
Group	z	34.0	51.0	s a	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0
8	×	42.0	63.0	s a	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.5
A307	1	13.5	20.3	s	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6 21.2	15.9 31.9
ž	Nominal Bolt Diameter, d, in.	Diamete	r, d, in.	nus p	1	11/8	1	11/4	13	13/8	1	11/2
	Nominal Bolt Area, in. ²	oft Area,	in. ²		0.9	0.994	2	1.23	1.48	8	-	1.77
ASTM Desig.	Thread Cond.	F _m /Ω (ksi)	¢F _{in} (ksi) LRFD	Load- ing	r _n /Ω	¢ſa I RFD	<i>r_n/Ω</i>	¢ſn I RED	r _n /Ω	¢ľa I RED	r _n /Ω	¢ľn
Group	z	27.0	40.5	s a	26.8	40.3 80.5	33.2	49.8 99.6	City Contractioner	59.9 120	47.8	71.7
٩	×	34.0	51.0	s o	33.8 67.6	50.7 101	41.8 83.6	62.7 125		75.5	60.2	90.3
Group	z	34.0	51.0	so	33.8 67.6	50.7 101	41.8 83.6	62.7 125	0	75.5 151	60.2	90.3 181
8	×	42.0	63.0	s a	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3	112 223
A307	т	13.5	20.3	s a	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0	30.0 60.1	23.9 47.8	35.9 71.9
ASD	LRFD	For end	For end loaded connections greater than 38 in., see AISC Specification Table J3.2 footnote b.	nnections	oreater th	nan 38 in	POD AICC	Coortion	dian Table	100		

Bolts		Tabl Slip-Critical	ritica		e 7-3 Connections	ctio	su		
A325, A325M F1858 A354 Grade BC		Available Shear Strength, kips (Class A Faying Surface, μ = 0.30)	le Sh Fayir	ear S Ig Sui	trengt face,	th, kip µ = 0	s ()()		
A449	No.	11	ß	Group A Bolts	lts				
art 0, 1	Sol 14 College	1.2.4	D-W/D	Non	Nominal Bolt Diameter, d, in.	Diameter,	d, in.		
200		5	5/8		3/4		/8		-
Mala Tura				Minimum	Group A I	Bolt Preter	Minimum Group A Bolt Pretension, kips		
HOIE LYPE	Loading	F	19		28		39		51
A Carton		r _n /Ω	¢ſn	r_n/Ω	φľn	r_n/Ω	φrn	r_n/Ω	¢r _n
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s D	4.29 8.59	6.44 12.9	6.33	9.49 19.0	8.81 17.6	13.2 26.4	11.5 23.1	17.3 34.6
OVS/SSLP	S	3.66	5.47	5.39	8.07	7.51	11.2	9.82	14.7
101	s	3.01	4.51	4.44	6.64	6.18	9.25	8.08	12.1
Tel	D	6.02	9.02	8.87	13.3	12.4	18.5	16.2	24.2
		film:		Non	Nominal Bolt Diameter, d, in.	Diameter,	d, in.	in the	
		F	11/8	-	11/4	-	13/8		11/2
Hola Tuna	Innding			Minimum	Group A F	3olt Preter	Minimum Group A Bolt Pretension, kips		
	Rimpor	56		1	71	8	85	1	103
		r_n/Ω	φľn	r_n/Ω	φľn	r_n/Ω	φľn	r_n/Ω	0In
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s	12.7	19.0	16.0	24.1	19.2	28.8	23.3	34.9
	٥	25.3	38.0	32.1	48.1	38.4	57.6	46.6	69.8
OVS/SSLP	s D	10.8 21.6	16.1 32.3	13.7 27.4	20.5 40.9	16.4 32.7	24.5 49.0	19.8 39.7	29.7
rsı	so	8.87 17.7	13.3 26.6	11.2 22.5	16.8 33.7	13.5 26.9	20.2 40.3	16.3 32.6	24.4 48.9
STD = standard hole OVS = oversized hole SSLT = short-slotted h SSLP = short-slotted h LSL = long-slotted hc	 = standard hole = oversized hole = short-slotted hole = short-slotted hole transverse to the line of force = short-slotted hole parallel to the line of force = long-slotted hole transverse or parallel to the line of force 	sverse to the allel to the lin sverse or par	e line of fo ne of force allel to the	rce a line of fo		S = single shear D = double shear	shear e shear	114	
Hole Type	ASD	LRFD	Note: Slip	-critical bolt	values assu	me no more	Note: Slip-critical bolt values assume no more than one filler has been provided	ler has been	provided
STD and SSLT	$\Omega = 1.50$	$\phi = 1.00$	See AISC	Specificatio	n Sections J	3.8 and J5 f	or poils nave been auged to discripture loads in the fillers. See AISC Specification Sections J3.8 and J5 for provisions when fillers	s when fillers	
OVS and SSLP	$\Omega = 1.76$	$\phi = 0.85$	are present. For Class R	nt. R favinn su	faces multi	niv the tahui	are present. For Class B favion surfaces multiply the tabulated evaluable strendsh hv 1.67	la ctranoth h	w 1 67
S	$\Omega = 2.14$	$\phi = 0.70$	100000	ine filliúpi n	racco, mun	und mile renni	מוסט מעמוומט	infinanc ai	· /0' / أ

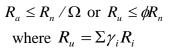
For bearing of plate material at bolt holes:

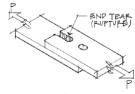
• deformation at bolt hole is a concern

$$R_n = 1.2L_c t F_u \le 2.4 dt F_u$$

• deformation at bolt hole is not a concern

$$R_n = 1.5L_c tF_u \le 3.0 dtF_u$$

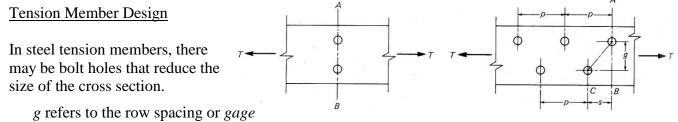

• long slotted holes with the slot perpendicular to the load


$$R_n = 1.0L_c tF_u \leq 2.0 dtF_u$$

where $R_n =$ the nominal bearing strength

- F_u = specified minimum tensile strength
- L_c = clear distance between the edges of the hole and the next hole or edge in the direction of the load
- d = nominal bolt diameter
- t = thickness of connected material

 $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$


The *minimum* edge desistance from the center of the outer most bolt to the edge of a member is generally 1³/₄ times the bolt diameter for the sheared edge and 1¹/₄ times the bolt diameter for the rolled or gas cut edges.

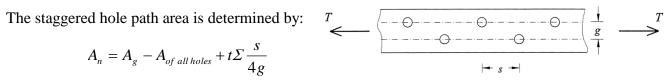
The maximum edge distance should not exceed 12 times the thickness of thinner member or 6 in.

Standard bolt hole spacing is 3 in. with the minimum spacing of $2\frac{2}{3}$ times the diameter of the bolt, d_b . Common edge distance from the center of last hole to the edge is $1\frac{1}{4}$ in..

		0.30	kip	kips/in.	thickness	ness	. thickness			
					Nom	inal Bolt [Nominal Bolt Diameter, d, in.	d, in.		
Hole Tyne	Snacing	F. ksi		5/8	S. Qhink	3/4		8/2		-
	s, in.	5	r_n/Ω	φľn	r_n/Ω	¢ľn	r_n/Ω	φ <i>Γ</i> n	r_n/Ω	¢r _n
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD	2 ^{2/3} db	58 65	34.1 .	51.1 57.3	41.3	62.0 69.5	48.6 54.4	72.9 81.7	55.8 62.6	83.7
SSLT	3 in.	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102	67.4 75.6	101
	2 ^{2/3} d _b	58 65	27.6 30.9	41.3 46.3	34.8 39.0	52.2 58.5	42.1 47.1	63.1 70.7	47.1 52.8	70.7
20	3 in.	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102	58.7 65.8	88.1 98.7
-	2 ^{2/3} d _b	58 65	29.7 33.3	44.6 50.0	37.0	55.5 62.2	44.2 49.6	66.3 74.3	49.3 55.3	74.0 82.9
S	3 in.	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102	60.9 68.3	91.4 102
	2 ^{2/3} d _b	58 65	3.62 4.06	5.44 6.09	4.35	6.53 7.31	5.08 5.69	7.61 8.53	5.80 6.50	8.70
LSL	3 in.	58 65	43.5 48.8	65.3 73.1	39.2 43.9	58.7 65.8	28.3 31.7	42.4 47.5	17.4 19.5	26.1 29.3
+10-	2 ^{2/3} d _b	58 65	28.4 31.8	42.6	34.4 38.6	51.7 57.9	40.5 45.4	60.7 68.0	46.5 52.1	69.8 78.2
LSL	3 in.	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1 85.3	56.2 63.0	84.3 94.5
STD, SSLT, SSLP, OVS, LSLP	S ≥ Sfull	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102	69.6 78.0	104 117
LISLI	S ≥ Sfull	58 65	36.3 40.6	54.4 60.9	43.5	65.3 73.1	50.8 56.9	76.1 85.3	58.0 65.0	87.0
Spacing for full	for full	STD, SSLT, LSLT	-	1 ¹⁵ /16	55	25/16	211	2 ^{11/16}	31	31/16
bearing strength	strength	SVO	21	21/16	27	27/16	213	2 ^{13/16}	3	31/4
Stull ^a , III.	÷.	SSLP	2	21/8	2	21/2	27	27/8	35	35/16
		LSLP	21	2 ^{13/16}	ŝ	3 ^{3/8}	315	3 ^{15/16}	4	41/2
Minimum Spacing ^a = STD = standard hole SSLT = short-slotted h SSLP = short-slotted hole OVS = oversized hole		2 ² /3 <i>d</i> , m. ble oriented t ble oriented p	ransverse barallel to	1 ^{11/16} erse to the lin I to the line of to the line of	l	N	23	29/16	Ň	211/16
LSLT = long	= long-slotted hole oriented transverse to the line of force	oriented tr	ansverse	to the line	of force					Sug
ASD Ω = 2.00	LRFD $\phi = 0.75$	Note: Spac slot in the see AISC S	ing indicat line of forc pecification	Note: Spacing indicated is from the c slot in the line of force. Hole deforma see AISC Specification Section J3.10	he center of rmation is c 3.10.	the hole or considered.	Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole of slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see ASC Specification Section J3.10.	center of the deformation	e adjacent l is not cons	idered.
(– I		neciliar a	Value 11da	GEN FUURIUS	O IO NIG 1100	ILEST SIVIED	Decimal value has been founded to the nearest sixteenth of an inch.	ť.		

Nominal Bort Diameter, 4, in. Fig 3/4 7/6 f_n/r_2 ϕ_{fn} f_n/r_2 ϕ_{fn} f_n/r_2 ϕ_{fn} f_n/r_2 ASD LIRFD ASD LIR ASD LIR ASD LIR ASD LIR ASD LIN ASD				kip	kips/in. thickness	thick	ness	kips/in. thickness	e.		
Edge L ₀ , in. f ₀ , f ₀ , f ₁ $\overline{f_0}$ $f_$			of the first	890 Dana	(smmb)	Nom	inal Bolt	Diameter,	<i>d</i> , in.	-	
Lumber La, in. Fn/12 ϕfn $f_n/12$ ϕfn $fn/12$ ϕfn $\phi fn/12$ $\phi fn/$	Hole Tune	11	E kei		5/8		3/4	1	7/8	-	-
	addi ainii	-	102 101	r_n/Ω	φľn	r_n/Ω	¢ſ _n	r_n/Ω	¢r _n	r_n/Ω	¢r _n
11/4 58 31.5 47.3 29.4 44.0 27.2 40.8 25.0 51.3 55.0 51.3 55.0 51.3 55.0 51.3 55.0 51.3 55.0 51.3 55.0 51.3 55.0 51.3 55.0 51.3 55.3 53.3 79.9 51.1 58.6 57.3 58.0 57.3 58.0 57.3 58.0 57.3 58.0 57.3 58.0 57.3 58.0 57.3 59.2 20.0 57.0 46.8 57.3 50.0 75.0 46.8 57.3 50.0 75.0 46.8 57.3 50.0 75.0 46.8 57.3 50.0 75.0 46.8 57.3 50.0 75.0 46.8 57.3 50.0 75.0 46.8 75.0 47.9 50.0 75.1 87.3 50.0 75.1 77.3 50.0 75.0 47.9 50.0 75.0 47.9 50.0 75.0 47.9 50.0 75.0 47.3	CILL .	CBA CTA	1 18	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
2 58 435 55.2 78.3 53.3 79.9 51.1 11/4 55 48.8 73.1 58.5 87.8 59.7 39.6 57.3 2 55 31.7 47.5 29.3 33.9 25.8 37.5 23.0 2 55 48.8 73.1 58.5 87.8 50.0 37.5 21.4 2 55 43.5 53.3 52.2 78.3 56.0 37.5 21.4 2 56 43.5 53.5 37.3 50.0 37.5 21.4 11/4 56 32.9 49.4 27.2 88.5 57.3 56.0 37.5 21.3 2 56 47.5 71.3 41.4 52.7 47.3 56.1 47.3 56.1 47.3 56.1 47.3 56.1 47.3 56.1 47.3 57.1 38.1 47.3 56.1 47.3 56.1 47.3 56.1 47.3	STD	11/4	58 62	31.5 35.3	47.3 53.0	29.4 32.9	44.0	27.2 30.5	40.8	25.0	37.5
11/4 58 28.3 42.4 26.1 39.2 23.9 30.0 75.0 40.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.3 50.0 75.0 40.2 23.2 23.3 50.0 75.0 46.8 40.2 23.2 23.3 50.0 75.0 46.8 40.2 23.2 23.3 50.0 75.0 46.8 77.1 52.6 73.1 52.6 73.1 52.6 73.3 55.0 23.5 21.8 50.0 75.0 44.7 77.9 53.6	SSLT	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	53.3 59.7	79.9	51.1 57.3	76.7
2 56 43.5 65.3 52.2 78.3 50.0 75.0 46.8 11/4 55 29.4 49.4 2.7.2 78.3 56.1 84.1 52.3 23.1 52.1 <td>CCID</td> <td>11/4</td> <td>58</td> <td>28.3 31.7</td> <td>42.4 47.5</td> <td>26.1 29.3</td> <td>39.2 43.9</td> <td>23.9 26.8</td> <td>35.9 40.2</td> <td>20.7</td> <td>31.0 34.7</td>	CCID	11/4	58	28.3 31.7	42.4 47.5	26.1 29.3	39.2 43.9	23.9 26.8	35.9 40.2	20.7	31.0 34.7
11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.3 2 56 43.5 55.3 58.5 78.3 51.1 76.7 28.0 37.5 21.3 2 66 48.8 73.1 58.5 78.3 51.1 76.7 24.4 2 66 48.8 73.1 58.5 78.3 51.1 76.7 24.7 2 66 48.8 73.1 10.9 16.3 5.44 81.6 - 1/4 65 47.5 71.3 41.4 62.2 35.3 53.0 29.3 20.1 2 66 47.5 71.3 41.4 62.2 35.3 53.0 20.8 1/1/4 65 24.4 23.5 43.5 63.3 30.4 24.6 47.3 26.1 2 58 36.3 53.5 73.3 43.4 66.6 42.6 42.6 42.6 42.7	391	2	58	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	50.0 56.1	75.0 84.1	46.8 52.4	70.1 78.6
2 58 435 65.3 52.2 78.3 51.1 76.7 47.3 56.5 35.5 53.5	-	11/4	58 62	29.4 32.9	44.0 49.4	27.2 30.5	40.8 45.7	25.0 28.0	37.5 42.0	21.8 24.4	32.6
1/4 58 16.3 24.5 10.9 16.3 5.44 8.16 2 56 18.3 27.4 12.2 18.3 6.09 9.14 2 56 47.5 71.3 41.4 62.2 35.3 54.7 323 283 2 56 29.5 49.4 63.6 37.0 52.5 31.5 47.3 20.1 2 56 29.5 49.4 65.3 44.1 53.0 20.3 29.3 29.4 47.7 20.1 20.8 20.3 24.5 47.7 20.1 20.8 20.3 24.5 47.7 20.1 20.8 20.1 20.8 20.1 20.8 20.1 20.8 20.1 20.8 20.1 24.5 47.7 20.7 20.3 20.3 20.1 24.6 47.7 20.1 20.8 20.6 20.8 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6	SAD	2	28 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	51.1 57.3	76.7 85.9	47.9 53.6	71.8 80.4
2 58 42.4 63.6 37.0 55.5 31.5 47.3 26.1 11/4 56 27.5 71.3 41.4 62.2 35.3 53.0 293.3 11/4 56 29.5 34.2 27.4 41.1 25.5 38.3 53.0 203.3 2 56 30.5 54.4 24.5 36.7 22.7 34.0 208 2 56 36.3 54.4 43.5 65.3 44.4 66.6 42.6 2 56 36.3 54.4 43.5 65.3 44.4 66.6 42.6 4 58 43.5 65.3 64.3 66.6 42.6 42.6 $L_e \geq L_e tuni 56 65.3 57.2 78.3 60.9 91.4 68.6 42.6 L_e \geq L_e tuni 56 43.8 73.1 58.2 58.3 56.0 91.4 58.0 L_e \geq L_e tuni 56 40.6 60.9$		11/4	58 65	16.3 18.3	24.5 27.4	10.9	16.3	5.44 6.09	8.16 9.14	11	11
	LSLP	2	58 65	42.4 47.5	63.6 71.3	37.0 41.4	55.5 62.2	31.5 35.3	47.3 53.0	26.1 29.3	39.2 43.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	101	11/4	28	26.3 29.5	39.4 44.2	24.5 27.4	36.7 41.1	22.7 25.4	34.0 38.1	20.8 23.4	31.3
	רפר	2	82 82	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	44.4 49.8	66.6 74.6	42.6 47.7	63.9 71.6
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	STD, SSLT, SSLP, OVS, LSLP	Le≥ Le tull	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102	69.6 78.0	104
STD, SSLT, LSLT 15/8 115/16 21/4 USS 111/16 2 25/16 SSLP 111/16 2 25/16 SSLP 111/16 2 25/16	LISL	$L_e \ge L_e t_{ull}$	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1	58.0 65.0	87.0
OVS 111/ ₁₆ 2 25/ ₁₆ SSLP 111/ ₁₆ 2 25/ ₁₆	Edge di for full t	istance	STD, SSLT, LSLT	12/		7	¹⁵ /16	21/	14	29	29/16
SSLP 111/16 2 25/16	strer	ngth	SVO	111	/16	2		25	/16	25	18
01. 07. 07.	$L_{\theta} \ge L_{\theta_1}$	tult ^a , in.	SSLP	111	1/16	2		25	/16	21	211/16
Z 1/16 Z'/16 Z'/8	1. 1	and the	LSLP	21/	16	21	27/16	27/8	18	31/4	14
	ASD	LRFD	- indicati	es spacing	less than m	inimum spa	icing requir	ed per AISC	Specificatio	n Section J	3.3.
LRFD	$\Omega = 2.00$	φ = 0.75	Note: Spat slot in the see AISC 5	cing indicate line of force Specification	ed is from the e. Hole defo. 7 Section J3	ne center of rmation is c .10.	the hole of considered.	Note: Spacing indicated is from the center of the hole or slot to the ce slot in the line of force. Hole deformation is considered. When hole del see AISC Specification Section J3.10.	Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole of slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10.	e adjacent l is not cons	hole of sidered

p refers to the bolt spacing or pitch


s refers to the longitudinal spacing of two consecutive holes

Effective Net Area:

The smallest effective are must be determined by subtracting the bolt hole areas. With staggered holes, the shortest length must be evaluated.

A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.

The effective net area, A_e , is determined from the net area, A_n , multiplied by a shear lag factor, U, which depends on the element type and connection configuration. If a portion of a connected member is not fully connected (like the leg of an angle), the unconnected part is not subject to the full stress and the shear lag factor can range from 0.6 to 1.0: $A_e = A_n U$

where t is the plate thickness, s is each stagger spacing, and g is the gage spacing.

Note Set 17.1

Relling and the second second

For tension elements:

 $R_a \le R_n / \Omega \text{ or } R_u \le \phi R_n$ where $R_u = \Sigma \gamma_i R_i$

 $R_a \leq R_n / \Omega \text{ or } R_u \leq \phi R_n$

where $R_{\mu} = \Sigma \gamma_i R_i$

1. yielding $R_n = F_y A_g$ $\phi = 0.90 (LRFD)$ $\Omega = 1.67 (ASD)$

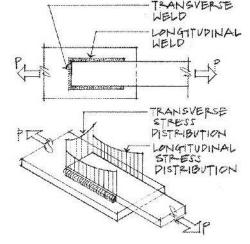
2. rupture
$$R_n = F_u A_e$$

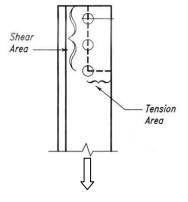
 $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$

where A_g = the gross area of the member (excluding holes) A_e = the effective net area (with holes, etc.) F_y = the yield strength of the steel F_u = the tensile strength of the steel (ultimate)

For shear elements:

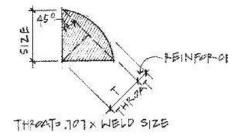
1. yielding $R_n = 0.6F_y A_g$ $\phi = 1.00 (LRFD)$ $\Omega = 1.50 (ASD)$


2. rupture $R_n = 0.6F_u A_{nv}$ $\phi = 0.75 (LRFD)$ $\Omega = 2.00 (ASD)$


> where A_g = the gross area of the member (excluding holes) A_{nv} = the net area subject to shear (with holes, etc.) F_y = the yield strength of the steel F_u = the tensile strength of the steel (ultimate)

Welded Connections

Weld designations include the strength in the name, i.e. E70XX has $F_y = 70$ ksi. Welds are weakest in shear and are assumed to always fail in the shear mode.


The throat size, T, of a fillet weld is determined trigonometry by: $T = 0.707 \times weld size^*$ * When the submerged arc weld process is used, welds over 3/8" will have a throat thickness of 0.11 in. larger than the formula.

Weld sizes are limited by the size of the parts being put together and are given in AISC manual table J2.4 along with the allowable strength per length of fillet weld, referred to as *S*.

The maximum size of a fillet weld permitted along edges of connected parts shall be:

- Material less than ¹/₄ in. thick, not greater than the thickness of the material.
- Material ¹/₄ in. or more in thickness, not greater than the thickness of the material minus 1/16 in., unless the weld is especially designated on the drawings to be built out to obtain full-throat thickness.

The *minimum length* of a fillet weld is 4 times the nominal size. If it is not, then the weld size used for design is ¹/₄ the length.

Intermittent fillet welds cannot be less than four times the weld size, not to be less than $1 \frac{1}{2}$ ".

Minimum Size	of Fillet	Welds

Material Thickness of Thicker Part Joined (in.)	Minimum Size of Fillet Weld ^a (in.)
To ¼ inclusive	1/8
Over 1/4 to 1/2	3/16
Over 1/2 to 3/4	1/4
Over ³ / ₄	5/16

American Institute of Steel Construction

<u>For fillet welds:</u>	$R_a \leq R_n / \Omega$ or $R_u \leq \phi R_n$
	where $R_{\mu} = \sum \gamma_i R_i$

for the weld metal: $R_n = 0.6F_{EXX}Tl = Sl$ $\phi = 0.75$ (LRFD) $\Omega = 2.00$ (ASD)

where:

T is throat thickness l is length of the weld

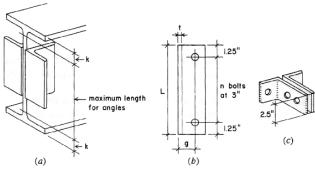
For a connected part, the other limit states for the base metal, such as tension yield, tension rupture, shear yield, or shear rupture **must** be considered.

Available	Strength of Fil	let Welds
per	r inch of weld (ϕS)
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
3/16	3.58	4.18
1⁄4	4.77	5.57
5/16	5.97	6.96
3/8	7.16	8.35
7/16	8.35	9.74
1/2	9.55	11.14
5/8	11.93	13.92
3⁄4	14.32	16.70

(not considering increase in throat with submerged arc weld process)

Note Set 17.1

GIP-DER BEAM

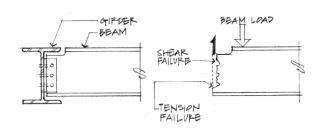

Framed Beam Connections

Coping is the term for cutting away part of the flange to connect a beam to another beam using welded or bolted angles.

AISC provides tables that give bolt and angle available strength knowing number of bolts, bolt type, bolt diameter, angle leg thickness, hole type and coping, *and* the wide flange beam being connected. For the connections the limit-state of bolt shear, bolts bearing on the angles, shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles, and bolt bearing on the beam web are considered.

Group A bolts include A325, while Group B includes A490.

here are also tables for bolted/welded doubleangle connections and all-welded doubleangle connections.


Sample AISC Table for Bolt and Angle Available Strength in All-Bolted Double-Angle Connections

-	LU = 00 KSI	0	Ā	ň	olt	þ	õ	lqn	All-Bolted Double-Angle	Ang	e	No Ka	√4-in.	Ę.
יר ≺ב או6נ					ŏ	n	Connections	tio	ns				Bolts	ts
1A 73	, = 58 ksi		ugtu -	auê 91	B	olt and	Angle	Availab	Bolt and Angle Available Strength, kips	ngth, k	sd	2		
4	4 Rows	tod	Ê	A Date		4	ala	3	An	Angle Thickness, in.	ckness	Ē	NON S	
		Group	8	Cond.	c /2	and L	-08	1/4		5/16	3	3/8		1/2
W24	W24, 21, 18, 16	Q2A	T BL S	181	338.7	3	ASD		0.000.4	ASD LRFD	ASD	ASD LRFD	ASD	ASD LRFD
				z>	ŝ	ES E	67.1	101	83.9	126	95.5		95.5	
							0/.1	75.0	12	75.0	101	- 1	071	-
		Group	s	SC	<i>^</i> C		0.00	645	0.00	645		64.5	0.00	6.0.7
	-	A	Clar	Class A	2 20	SSLT	50.6	75.9	S. 30100	75.9			50.6	- E.
1:	6-0			US US	ŝ	STD	67.1	101	100.00	126	84.4		84.4	
1	Ø.		Clas	Class B	0 %	SNIT	65.3 65.8	97.9	11.9	108	21.9	127	71.9	108
1				z	s w	STD	67.1	101	8	126	101	151	120	
				×	ŝ	STD	67.1	101	Secula	126	101	151	134	201
	~		S	SC	ŝ	STO	63.3	94.9	120-14	94.9	63.3	94.9	63.3	· · · ·
-		Group R	Clas	Class A	⊃ %	SNU	53.9	80.7	53.9	80.7	53.9 63.3	80.7	53.9 63.3	80.7
			ſ		s is	STD	67.1	101	20.00	126	-	151	105	158
			o Sa	ou Class R	0	SVO	65.3	97.9	100	122	89.9		89.9	
		ſ			8	SSLT	65.8	98.7	82.2	123	98.7	148	105	158
	1.000	Re	am we	D AVall	able S	trengt	ber In		Beam web Available Strength per Inch Inickness, kips/in.	kips/II	-	1		
	Hole Type			S	STD			0	OVS Let*. in.			SSLT	5	
					ľ								ľ	
	Lev, in.	1.20	-	11/2	100	13/4			-	13/4	-	11/2	-	13/4
	10.000	100	1259		242	_	28	- 1	ASU	- 1	Re l		ASU	
		13/0	101	254	21	202	156	238	164	250	164	C#2	2/1	102
Cope	Coped at Top	11/2	3 12	257	180	269	161	241	169	254	8 8	253	11	265
Flan	Flange Only	15/8	174	261	182	273	163	245	171	257	171	256	179	268
		7	181	272	189	284	171	256	179	268	178	267	186	279
	234 P.0		201	301	209	313	190	285	198	297	198	296	206	309
		11/4	156	234	156	234	146	219	146	219	156	234	156	234
- Const	Consel at Both	8/cL	191	241	191	240	151	177	151	177	161	240	191	241
Ē	Flances	15/a	171	256	171	256	191	141	191	241	171	256	171	256
	100	2	181	272	185	278		256	176	263	178	267	185	278
		. m	201	301	209	313	190	285	198	297	198	296	206	309
	Uncoped	3/5	234	351	234	351	234	351	234	351	234	351	234	351
ans e	Support Available Strength per Inch Thickness, kins/in	ble °,	Notes: STD = OVS = SSLT =	votes: STD = Standard holes OVS = Oversized holes SSLT = Short-slotted h	Standard holes Oversized holes Short-slotted ho	Standard holes Oversized holes Short-solted holes transverse	sverse		N = Threads included X = Threads excluded SC = Slip critical	Threads inc Threads exc Slip critical	cluded	Avallat Pha per Prices Prices	19901 Strand	· ·
Hole	VSD	LRFD	* Tahut	to uneu	and the second	udu 1/4-in	reducti	na ni no	to unectori or load * Tahulatad values include 1/2, in radiuction in and distance 7 . to account for mossible	1		at for not	seihla	Slofe Slote
2			nuder	underrun in beam length	eam len	li filo		5		1. Han 100		5		
SSLT SSLT	468	702	Note: S been ad	lip-critic dded to i	al bolt v distribut	alues as e loads i	sume no	o more ti ers.	Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads in the fillers.	filler has	been pr	ovided or	r bolts h	ave

Limiting Strength or Stability States

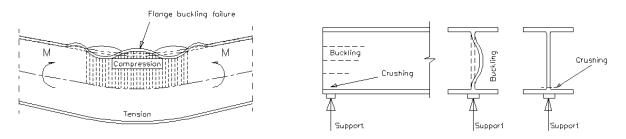
In addition to resisting shear and tension in bolts and shear in welds, the connected materials may be subjected to shear, bearing, tension, flexure and even prying action. Coping can significantly reduce design strengths and may require web reinforcement. All the following must be considered:

- shear yielding
- shear rupture
- block shear rupture failure of a block at a beam as a result of shear and tension
- tension yielding
- tension rupture
- local web buckling
- lateral torsional buckling

Block Shear Strength (or Rupture):

 $R_a \le R_n / \Omega$ or $R_u \le \phi R_n$ where $R_u = \Sigma \gamma_i R_i$

$$R_{n} = 0.6F_{u}A_{nv} + U_{bs}F_{u}A_{nt} \le 0.6F_{y}A_{gv} + U_{bs}F_{u}A_{nt}$$


$$\phi = 0.75 (LRFD)$$
 $\Omega = 2.00 (ASD)$

where:

 A_{nv} is the net area subjected to shear A_{nt} is the net area subjected to tension A_{gv} is the gross area subjected to shear $U_{bs} = 1.0$ when the tensile stress is uniform (most cases) = 0.5 when the tensile stress is non-uniform

Local Buckling in Steel I Beams- Web Crippling or Flange Buckling

Concentrated forces on a steel beam can cause the web to buckle (called web crippling). Web stiffeners under the beam loads and bearing plates at the supports reduce that tendency. Web stiffeners also prevent the web from shearing in plate girders.

The maximum support load and interior load can be determined from:

$$P_{n(\text{max-end})} = (2.5k + N)F_{yw}t_w$$
$$P_{n(\text{interior})} = (5k + N)F_{yw}t_w$$


$$P_{n(\text{interior})} = (5k + N)F_{yw}t_w$$

where

 t_w = thickness of the web N = bearing length

k = dimension to fillet found in beam section tables

 $\Omega = 1.50 \text{ (ASD)}$ $\phi = 1.00 (LRFD)$

