Examples: Reinforced Concrete

Example 1

A simply supported beam 20 ft long carries a service dead load of $300 \mathrm{lb} / \mathrm{ft}$ and a live load of $500 \mathrm{lb} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 40 steel and concrete strength of 5000 psi .

SOLUTION:
Find the design moment, M_{u}, from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. It is good practice to guess a beam size to include self weight in the dead load, because "service" means dead load of everything except the beam itself.

Guess a size of $10 \mathrm{in} \times 12 \mathrm{in}$. Self weight for normal weight concrete is the density of $150 \mathrm{lb} / \mathrm{ft}^{3}$ multiplied by the cross section area: self weight $=150 \mathrm{lb} / \mathrm{ft}^{3}(10 \mathrm{in})(12 \mathrm{in}) \cdot\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)^{2}=125 \mathrm{lb} / \mathrm{ft}$
$W_{u}=1.2(300 \mathrm{lb} / \mathrm{ft}+125 \mathrm{lb} / \mathrm{ft})+1.6(500 \mathrm{lb} / \mathrm{ft})=1310 \mathrm{lb} / \mathrm{ft}^{2}$

Table 3.7.1

Total Areas for Various Numbers of Reinforcing Bars

$\begin{aligned} & \text { Bar } \\ & \text { Size } \end{aligned}$	Nominal Diameter (in.)	Weight (lb/ft)	Number of Bars									
			1	2	3	4	5	6	7	8	9	10
\# 3	0.375	0.376	0.11	0.22	0.33	0.44	0.55	0.66	0.77	0.88	0.99	1.10
\#4	0.500	0.668	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00
\#5	0.625	1.043	0.31	0.62	0.93	1.24	1.55	1.86	2.17	2.48	2.79	3.10
\#6	0.750	1.502	0.44	0.88	1.32	1.76	2.20	2.64	3.08	3.52	3.96	4.40
\#7	0.875	2.044	0.60	1.20	1.80	2.40	3.00	3.60	4.20	4.80	5.40	6.00
\#8	1.000	2.670	0.79	1.58	2.37	3.16	3.95	4.74	5.53	6.32	7.11	7.90
\#9	1.128	3.400	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
\#10	1.270	4.303	1.27	2.54	3.81	5.08	6.35	7.62	8.89	10.16	11.43	12.70
\#11	1.410	5.313	1.56	3.12	4.68	6.24	7.80	9.36	10.92	12.48	14.04	15.60
\#14 ${ }^{\text {a }}$	1.693	7.65	2.25	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50
$\# 18^{\text {a }}$	2.257	13.60	4.00	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00

" \#14 and \#18 bars are used primarily as column reinforcement and are rarely used in beams.

The maximum moment for a simply supported beam
is $\frac{w l^{2}}{8}$:
$M_{u}=\frac{w_{u} l^{2}}{8}=\frac{1310 \mathrm{lb} / \mathrm{ft}(20 f t)^{2}}{8} 65,500 \mathrm{lb}-\mathrm{ft}$
M_{n} required $=\mathrm{M}_{\mathrm{u}} / \phi=\frac{65,500^{\mathrm{lb}-\mathrm{ft}}}{0.9}=72,778 \mathrm{lb}-\mathrm{ft}$

To use the design chart aid, find $\mathrm{R}_{\mathrm{n}}=\frac{M_{n}}{b d^{2}}$, estimating that d is about 1.75 inches less than h :
$d=12$ in -1.75 in $=10.25$ in
$\mathrm{R}_{\mathrm{n}}=\frac{72,778^{\text {lb-ft }}}{(10 \mathrm{in})(10.25 \mathrm{in})^{2}} \cdot\left(12_{\mathrm{in} / \mathrm{ft}}\right)=831 \mathrm{psi}$
ρ corresponds to approximately 0.023 , so the estimated area required, $\mathrm{A}_{\mathrm{s},}$ can be found:
$\mathrm{A}_{s}=\rho b d=(0.023)(10 \mathrm{in})(10.25 \mathrm{in})=2.36 \mathrm{in}^{2}$
The number of bars for this area can be found from handy charts.
(Whether the number of bars actually fit for the width with cover and space between bars must also be considered.)
Try $\mathrm{A}_{\mathrm{s}}=2.37 \mathrm{in}^{2}$ from 3\#8 bars
$\mathrm{d}=12$ in -1.5 in (cover) $-1 / 2(8 / 8$ in diameter bar) $=10$ in
Find the moment capacity of the beam as designed, $\phi \mathrm{M}_{\mathrm{n}}$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{s} \mathrm{fy}_{\mathrm{y}} / 0.85 \mathrm{f}_{\mathrm{c}} \mathrm{~b}=2.37 \mathrm{in}^{2}(40 \mathrm{ksi}) /[0.85(5 \mathrm{ksi}) 10 \mathrm{in}]=2.23 \mathrm{in} \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s} y}(\mathrm{~d}-\mathrm{a} / 2)=0.9\left(2.37 \mathrm{in}^{2}\right)(40 \mathrm{ksi})\left(10 \mathrm{in}-\frac{2.23 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12 \mathrm{in} / \mathrm{ft}}\right)=63.2 \mathrm{k}-\mathrm{ft} \ngtr 64 \mathrm{k} \text {-ft needed (not OK) }
\end{aligned}
$$

So, we can increase d to 13 in , and $\phi \mathrm{M}_{\mathrm{n}}=70.3 \mathrm{k}$-ft (OK). Or increase As_{s} to $2 \# 10$'s (2.54 in2), for a $=2.39$ in and $\phi \mathrm{M}_{\mathrm{n}}$ of 67.1 k-ft (OK).

Example 2

Determine the capacity of a 16 " x 16 " column with 8 - \#10 bars, tied. Grade 40 steel and 4000 psi concrete.

SOLUTION:

Find $\phi \mathrm{P}_{\mathrm{n}}$, with $\phi=0.65$ and $\mathrm{P}_{\mathrm{n}}=0.80 \mathrm{P}_{0}$ for tied columns and

$$
P_{o}=0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}
$$

Steel area (found from reinforcing bar table for the bar size):

$$
\mathrm{A}_{\mathrm{st}}=8 \text { bars } \times\left(1.27 \mathrm{in}^{2}\right)=10.16 \mathrm{in}^{2}
$$

Concrete area (gross):

$$
\mathrm{A}_{\mathrm{g}}=16 \text { in } \times 16 \text { in = } 256 \mathrm{in}^{2}
$$

Grade 40 reinforcement has $\mathrm{f}_{\mathrm{y}}=40,000$ psi and $f_{c}^{\prime}=4000 \mathrm{psi}$

ASTM STANDARD REINFORCING BARS			
Bar size, no.	Nominal diameter, in.	Nominal area, in. 2	Nominal weight, lb/ft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.303
11	1.410	1.56	5.313
14	1.693	2.25	7.650
18	2.257	4.00	13.600

$\phi \mathrm{P}_{\mathrm{n}}=(0.65)(0.80)\left[0.85(4000 \mathrm{psi})\left(256 \mathrm{in}^{2}-10.16 \mathrm{in}^{2}\right)+(40,000 \mathrm{psi})\left(10.16 \mathrm{in}^{2}\right)\right]=646,026 \mathrm{lb}=646 \mathrm{kips}$

