Reinforced Concrete Design

Notation:

	$=$ depth of the effective compression block in a concrete beam
A	= name for area
A_{g}	$=$ gross area, equal to the total area ignoring any reinforcement
A_{s}	= area of steel reinforcement in concrete beam design
A_{s}^{\prime}	$\begin{aligned} & =\text { area of steel compression } \\ & \text { reinforcement in concrete beam } \\ & \text { design } \end{aligned}$
$A_{s t}$	$=$ area of steel reinforcement in concrete column design
A_{v}	$=$ area of concrete shear stirrup reinforcement
ACI	= American Concrete Institute
b	$=$ width, often cross-sectional
b_{E}	$=$ effective width of the flange of a concrete T beam cross section
b_{f}	$=$ width of the flange
b_{w}	$=$ width of the stem (web) of a concrete T beam cross section
cc	$=$ shorthand for clear cover
C	= name for centroid
	= name for a compression force
C_{c}	$=$ compressive force in the compression steel in a doubly reinforced concrete beam
C_{s}	$=$ compressive force in the concrete of a doubly reinforced concrete beam
d	$=$ effective depth from the top of a reinforced concrete beam to the centroid of the tensile steel
d^{\prime}	$=$ effective depth from the top of a reinforced concrete beam to the centroid of the compression steel
d_{b}	$=$ bar diameter of a reinforcing bar
D	= shorthand for dead load
DL	= shorthand for dead load
E	$\begin{aligned} & =\text { modulus of elasticity or Young's } \\ & \text { modulus } \\ & =\text { shorthand for earthquake load } \end{aligned}$
E_{c}	$=$ modulus of elasticity of concrete
E_{s}	$=$ modulus of elasticity of steel
	$=$ symbol for stress

$f_{c} \quad=$ compressive stress
$f_{c}^{\prime}=$ concrete design compressive stress
$f_{s} \quad=$ stress in the steel reinforcement for concrete design
$f_{s}^{\prime}=$ compressive stress in the
compression reinforcement for
concrete beam design
$f_{y} \quad=$ yield stress or strength
$F \quad=$ shorthand for fluid load
$F_{y}=$ yield strength
$G \quad=$ relative stiffness of columns to beams in a rigid connection, as is Ψ
$h \quad=$ cross-section depth
$H=$ shorthand for lateral pressure load
$h_{f} \quad=$ depth of a flange in a T section
$I_{\text {transformed }}=$ moment of inertia of a multimaterial section transformed to one material
$k \quad=$ effective length factor for columns
$\ell_{b} \quad=$ length of beam in rigid joint
$\ell_{c} \quad=$ length of column in rigid joint
$l_{d} \quad=$ development length for reinforcing steel
$l_{d h}=$ development length for hooks
$l_{n} \quad=$ clear span from face of support to face of support in concrete design
$L \quad=$ name for length or span length, as is l
$=$ shorthand for live load
$L_{r} \quad=$ shorthand for live roof load
$L L=$ shorthand for live load
$M_{n} \quad=$ nominal flexure strength with the steel reinforcement at the yield stress and concrete at the concrete design strength for reinforced concrete beam design
$M_{u}=$ maximum moment from factored loads for LRFD beam design
$n \quad=$ modulus of elasticity transformation coefficient for steel to concrete
n.a. $=$ shorthand for neutral axis (N.A.)
$p H=$ chemical alkalinity
$P=$ name for load or axial force vector

Reinforced Concrete Design

Structural design standards for reinforced concrete are established by the Building Code and Commentary (ACI 318-11) published by the American Concrete Institute International, and uses ultimate strength design.

Materials

$f^{\prime}{ }_{\mathrm{c}}=$ concrete compressive design strength at 28 days (units of psi when used in equations)

Deformed reinforcing bars come in grades $40,60 \& 75$ (for 40 ksi , 60 ksi and 75 ksi yield strengths). Sizes are given as \# of $1 / 8$ " up to \#8 bars. For \#9 and larger, the number is a nominal size (while

GRADE 60 the actual size is larger).

Reinforced concrete is a composite material, and the average density is considered to be $150 \mathrm{lb} / \mathrm{ft}^{3}$. It has the properties that it will creep (deformation with long term load) and shrink (a result of hydration) that must be considered.

Plane sections of composite materials can still be assumed to be plane (strain is linear), but the stress distribution is not the same in both materials because the modulus of elasticity is different. ($f=\mathrm{E} \cdot \varepsilon$)

In order to determine the stress, we can define n as the ratio of the elastic moduli:

$$
n=\frac{E_{2}}{E_{1}}
$$

n is used to transform the width of the second material such that it sees the equivalent element stress.

Transformed Section y and I

In order to determine stresses in all types of material in the beam, we transform the materials into a single material, and calculate the location of the neutral axis and modulus of inertia for that material.

ex: When material 1 above is concrete and material 2 is steel:
to transform steel into concrete $n=\frac{E_{2}}{E_{1}}=\frac{E_{\text {steel }}}{E_{\text {concrete }}}$
to find the neutral axis of the equivalent concrete member we transform the width of the steel by multiplying by n
to find the moment of inertia of the equivalent concrete member, $\mathrm{I}_{\text {transformed }}$, use the new geometry resulting from transforming the width of the steel
concrete stress: $f_{\text {concrete }}=-\frac{M y}{I_{\text {transformel }}}$
steel stress: $\quad f_{\text {steel }}=-\frac{M y n}{I_{\text {transformel }}}$

Reinforced Concrete Beam Members

Stresses in the concrete above the neutral axis are compressive and nonlinearly distributed. In the tension zone below the neutral axis, the concrete is assumed to be cracked and the tensile force present to be taken up by reinforcing steel.

Working stress analysis. (Concrete stress distribution is assumed to be linear. Service loads are used in calculations.)

Actual stress distribution near ultimate strength (nonlinear).

Typical stress-strain curve for concrete,

Ultimate strength analysis. (A rectangular stress block is used to idealize the actual stress distribution. Calculations are based on ultimate loads and failure stresses.)

Ultimate Strength Design for Beams

The ultimate strength design method is similar to LRFD. There is a nominal strength that is reduced by a factor ϕ which must exceed the factored design stress. For beams, the concrete only works in compression over a rectangular "stress" block above the n.a. from elastic calculation, and the steel is exposed and reaches the yield stress, F_{y}

For stress analysis in reinforced concrete beams

- the steel is transformed to concrete
- any concrete in tension is assumed to be cracked and to have no strength
- the steel can be in tension, and is placed in the bottom of a beam that has positive bending moment

Figure 8.5: Bending in a concrete bearn without and with steel reinforcing

The neutral axis is where there is no stress and no strain. The concrete above the n.a. is in compression. The concrete below the n.a. is considered ineffective. The steel below the n.a. is in tension.

Because the $\mathrm{n} . \mathrm{a}$. is defined by the moment areas, we can solve for x knowing that d is the distance from the top of the concrete section to the centroid of the steel:

$$
b x \cdot \frac{x}{2}-n A_{s}(d-x)=0
$$

x can be solved for when the equation is rearranged into the generic format with $\mathrm{a}, \mathrm{b} \& \mathrm{c}$ in the binomial equation: $\quad a x^{2}+b x+c=0 \quad$ by $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

T-sections

If the n.a. is above the bottom of a flange in a T section, x is found as for a rectangular section.

If the n.a. is below the bottom of a flange in a T section, x is found by including the flange and the stem of the web $\left(b_{w}\right)$ in the moment area calculation:

$$
b_{f} h_{f}\left(x-\frac{h_{f}}{h^{2}}\right)+\left(x-h_{f}\right) b_{w} \frac{\left(x-h_{f}\right)}{2}-n A_{s}(d-x)=0
$$

Load Combinations - (Alternative values allowed)

$1.4 D$
$1.2 D+1.6 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
$1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(1.0 L$ or $0.5 W)$
$1.2 D+1.0 W+1.0 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
$1.2 D+1.0 E+1.0 L+0.2 S$
$0.9 D+1.0 W$
$0.9 D+1.0 E$

Internal Equilibrium

ASTM STANDARD REINFORCING BARS
$\mathrm{C}=$ compression in concrete $=$ stress x area $=0.85 f^{\prime} c b a$
$\mathrm{T}=$ tension in steel $=$ stress x area $=A_{s} f_{y}$

$$
C=T \text { and } M_{n}=T(d-a / 2)
$$

$$
\begin{array}{ll}
\text { where } & \mathrm{f}^{\prime}{ }_{\mathrm{c}}=\text { concrete compression strength } \\
& \mathrm{a}=\text { height of stress block } \\
& \mathrm{b}=\text { width of stress block } \\
& \mathrm{f}_{\mathrm{y}}=\text { steel yield strength } \\
\mathrm{A}_{\mathrm{s}}=\text { area of steel reinforcement } \\
& \mathrm{d}=\text { effective depth of section } \\
& \text { (depth to n.a. of reinforcement) }
\end{array}
$$

Bar size, no.	Nominal diameter, in.	Nominal area, in. 2	Nominal weight, lbfft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.303
11	1.410	1.56	5.313
14	1.693	2.25	7.650
18	2.257	4.00	13.600

With $\mathrm{C}=\mathrm{T}, A_{S} f y=0.85 f^{\prime} c b a$ so a can be determined with $a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}$

Criteria for Beam Design

For flexure design:

$$
M_{u} \leq \phi M_{n} \quad \phi=0.9 \text { for flexure }
$$

so, M_{u} can be set $=\phi M_{n}=\phi T(d-a / 2)=\phi A_{S} f y(d-a / 2)$

Reinforcement Ratio

The amount of steel reinforcement is limited. Too much reinforcement, or over-reinforced will not allow the steel to yield before the concrete crushes and there is a sudden failure. A beam with the proper amount of steel to allow it to yield at failure is said to be under reinforced.
The reinforcement ratio is just a fraction: $\rho=\frac{A_{s}}{b d}$ (or p) and must be less than a value determined with a concrete strain of 0.003 and tensile strain of 0.004 (minimum). The practical value for the strain in the reinforcement is a value of 0.005 . Previous codes limited the amount to $0.75 \rho_{\text {balanced }}$ where $\rho_{\text {balanced }}$ was determined from the amount of steel that would make the concrete start to crush at the exact same time that the steel would yield based on strain.

Flexure Design of Reinforcement

One method is to "wisely" estimate a height of the stress block, a, and solve for A_{s}, and calculate a new value for a using M_{u}.

Maximum Reinforcement Ratio ρ for Singly Reinforced Rectangular Beams (tensile strain $=0.005$)

1. guess a (less than n.a.)
2. $A_{s}=\frac{0.85 f_{c}^{\prime} b a}{f_{y}}$
3. solve for a from

$$
\begin{gathered}
M_{u}=\phi A_{S} f y(d-a / 2): \\
a=2\left(d-\frac{M_{u}}{\phi A_{s} f_{y}}\right)
\end{gathered}
$$

	$f_{c}^{\prime}=3000 \mathrm{psi}$	$f_{c}^{\prime}=3500 \mathrm{psi}$	$f_{c}^{\prime}=4000 \mathrm{psi}$	$f_{c}^{\prime}=5000 \mathrm{psi}$	$f_{c}^{\prime}=6000 \mathrm{psi}$
f_{y}	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.80$	$\beta_{1}=0.75$
$40,000 \mathrm{psi}$	0.0203	0.0237	0.0271	0.0319	0.0359
$50,000 \mathrm{psi}$	0.0163	0.0190	0.0217	0.0255	0.0287
$60,000 \mathrm{psi}$	0.0135	0.0158	0.0181	0.0213	0.0239
	$f_{c}^{\prime}=20 \mathrm{MPa}$	$f_{c}^{\prime}=25 \mathrm{MPa}$	$f_{c}^{\prime}=30 \mathrm{MPa}$	$f_{c}^{\prime}=35 \mathrm{MPa}$	$f_{c}^{\prime}=40 \mathrm{MPa}$
f_{y}	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.81$	$\beta_{1}=0.77$
300 MPa	0.0181	0.0226	0.0271	0.0301	0.0327
350 MPa	0.0155	0.0194	0.0232	0.0258	0.0281
400 MPa	0.0135	0.0169	0.0203	0.0226	0.0245
500 MPa	0.0108	0.0135	0.0163	0.0181	0.0196

4. repeat from 2. until a found from step 3 matches a used in step 2.

Design Chart Method:

1. calculate $R_{n}=\frac{M_{n}}{b d^{2}}$
2. find curve for $f^{\prime} c$ and f_{y} to get ρ
3. calculate A_{s} and a

$$
A_{s}=\rho b d \text { and } a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

Any method can simplify the size of d using $\mathrm{h}=1.1 \mathrm{~d}$

Maximum Reinforcement

Based on the limiting strain of
0.005 in the steel, $x($ or $c)=0.375 d$ so
$a=\beta_{1}(0.375 d)$ to find $\mathrm{A}_{s-\max }$
(β_{1} is shown in the table above)

Minimum Reinforcement

Minimum reinforcement is provided even if the concrete can resist the tension. This is a means to control cracking.
Minimum required: $A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{w} d\right)$ but not less than: $A_{S}=\frac{200}{f_{y}}\left(b_{w} d\right)$

Figure 3.8.1 Strength curves (R_{n} vs ρ) for singly reinforced rectangular sections. Upper limit of curves is at $\rho_{\text {max }}$. (tensile strain of 0.004)
where f_{c}^{\prime} is in psi. \quad This can be translated to $\rho_{\min }=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}$ but not less than $\frac{200}{f_{y}}$

Compression Reinforcement

If a section is doubly reinforced, it means there is steel in the beam seeing compression. The force in the compression steel at yield is equal to stress x area, $\mathrm{C}_{\mathrm{s}}=A_{c} \cdot F_{y}$. The total compression that balances the tension is now: $T=C_{c}+C_{s}$. And the moment taken about the centroid of the compression
 stress is $M_{n}=T(d-a / 2)+C_{s}\left(a-d^{\prime}\right)$
where $A_{s}{ }^{\text {‘ }}$ is the area of compression reinforcement, and d^{\prime} is the effective depth to the centroid of the compression reinforcement

T-sections (pan joists)

T beams have an effective width, b_{E}, that sees compression stress in a wide flange beam or joist in a slab system.

For interior T -sections, b_{E} is the smallest of $L / 4, b_{w}+16 t$, or center to center of beams

For exterior T-sections, b_{E} is the smallest of

Figure 9.3.1 Actual and equivalent stress distribution over flange width.
$b_{w}+L / 12, b_{w}+6 t$, or $b_{w}+1 / 2($ clear distance to next beam)
When the web is in tension the minimum reinforcement required is the same as for rectangular sections with the web width $\left(b_{w}\right)$ in place of b.

When the flange is in tension (negative bending), the minimum reinforcement required is the greater value of $\quad A_{s}=\frac{6 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{w} d\right) \quad$ or $\quad A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{f} d\right)$
where f_{c}^{\prime} is in psi, b_{w} is the beam width, and b_{f} is the effective flange width

Cover for Reinforcement

Cover of concrete over/under the reinforcement must be provided to protect the steel from corrosion. For indoor exposure, $3 / 4$ inch is required for slabs, 1.5 inch is typical for beams, and for concrete cast against soil, 3 inches is typical.

Bar Spacing

Minimum bar spacings are specified to allow proper consolidation of concrete around the reinforcement.

Slabs

One way slabs can be designed as "one unit"wide beams. Because they are thin, control of deflections is important, and minimum depths are specified, as is minimum reinforcement for shrinkage and crack control when not in flexure. Reinforcement is commonly small diameter bars and welded wire fabric. Minimum spacing between bars is also specified for shrinkage and crack control as five times the slab thickness not exceeding $18 "$. For required flexure reinforcement spacing the limit is three times the slab thickness not exceeding 18 ".

TABLE 9.5(a)-MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED

		Minimum thickness, \boldsymbol{h}		
	Simply supported	One end continuous	Both ends continuous	Cantilever
Member	Members not supporting or attached to partitions or other construction likely to be damaged by large deflections.			
Solid oneway slabs	$\ell / 20$	$\ell / 24$	$\ell / 28$	$\ell / 10$
Beams or ribbed oneway slabs	$\ell / 16$	$\ell / 18.5$	$\ell / 21$	$\ell / 8$

Notes:
Vahues given shall be used directly for members with normalweight concrete
and Grade 60 reinforcement. For other conditions, the values shall be modified as follows:
a) For lightweight concrete having equilibrium density, w_{c}, in the range of 90
to $115 \mathrm{lb} / \mathrm{ft}^{3}$, the values shall be multiplied by ($1.65-0.005 w_{c}$) but not less
than 1.09 .
b) For f_{y} other than $60,000 \mathrm{psi}$, the values shall be multiplied by $\left(\mathbf{0 . 4}+\mathrm{f}_{y} \mathrm{H} \mathbf{1 0 0 , 0 0 0)}\right.$.

Shrinkage and temperature reinforcement (and minimum for flexure reinforcement):
Minimum for slabs with grade 40 or 50 bars:

$$
\begin{aligned}
& \rho=\frac{A_{s}}{b t}=0.002 \text { or } A_{s-m i n}=0.002 b t \\
& \rho=\frac{A_{s}}{b t}=0.0018 \text { or } A_{s-m i n}=0.0018 \mathrm{bt}
\end{aligned}
$$

Shear Behavior

The maximum shear for design, V_{u} is the value at a distance of d from the face of the support.

Nominal Shear Strength

The shear force that can be resisted is the shear stress \times cross section area: $V_{c}=v_{c} \times b_{w} d$ The shear stress for beams (one way) $v_{c}=2 \sqrt{f_{c}^{\prime}} \quad$ so $\phi V_{c}=\phi 2 \sqrt{f_{c}^{\prime}} b_{w} d$

$$
\text { where } \quad b_{w}=\text { the beam width or the minimum width of the stem. }
$$

One-way joists are allowed an increase of $10 \% \mathrm{~V}_{\mathrm{c}}$ if the joists are closely spaced.
Stirrups are necessary for strength (as well as crack control): $V_{s}=\frac{A_{v} f_{y} d}{s}$
where $\quad A_{v}=$ area of all vertical legs of stirrup
$\mathrm{s}=$ spacing of stirrups
d = effective depth

For shear design:

$$
V_{U} \leq \phi V_{c}+\phi V_{S} \quad \phi=0.75 \text { for shear }
$$

Spacing Requirements

Stirrups are required when V_{u} is greater than $\frac{\phi V_{c}}{2}$
Table 3-8 ACI Provisions for Shear Design*

*Members subjected to shear and flexure only; $\phi \mathrm{V}_{\mathrm{c}}=\phi 2 \sqrt{\mathrm{f}_{c}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}, \phi=0.75$ (ACl 11.3.1.1)
** $A_{v}=2 \times A_{b}$ for U stirrups; $f_{y} \leq 60 \mathrm{ksi}(\mathrm{ACl} 11.5 .2)$
\dagger A practical limit for minimum spacing is $\mathrm{d} / 4$
$\dagger \dagger$ Maximum spacing based on minimum shear reinforcement ($=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{y}} / 50 \mathrm{~b}_{\mathrm{w}}$) must also be considered
(ACl 11.5.5.3).
Economical spacing of stirrups is considered to be greater than $\mathrm{d} / 4$. Common spacings of $d / 4, d / 3$ and $d / 2$ are used to determine the values of ϕV_{s} at which the spacings can be increased.

$$
\phi V_{s}=\frac{\phi A_{v} f_{y} d}{s}
$$

This figure shows the size of V_{n} provided by $\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}$ (long dashes) exceeds $\mathrm{V}_{\mathrm{u}} / \phi$ in a step-wise function, while the spacing provided (short dashes) is at or less than the required s (limited by the maximum allowed). (Note that the maximum shear permitted from the stirrups is $8 \sqrt{f_{c}^{\prime}} b_{w} d$

The minimum recommended spacing for the first stirrup is 2 inches from the face of the support.

Torsional Shear Reinforcement

On occasion beam members will see twist along the access caused by an eccentric shape supporting a load, like on an L-shaped spandrel (edge) beam. The torsion results in shearing stresses, and closed stirrups may be needed to resist the stress that the concrete cannot resist.

Fig. R11.6.3.6(b)—Definition of $\mathbf{A}_{\mathbf{o h}}$

Development Length for Reinforcement

Because the design is based on the reinforcement attaining the yield stress, the reinforcement needs to be properly bonded to the concrete for a finite length (both sides) so it won't slip. This is referred to as the development length, l_{d}. Providing sufficient length to anchor bars that need to reach the yield stress near the end of connections are also specified by hook lengths. Detailing reinforcement is a tedious job. Splices are also necessary to extend the length of reinforcement that come in standard lengths. The equations are not provided here.

Development Length in Tension

With the proper bar to bar spacing and cover, the common development length equations are:
\#6 bars and smaller: $\quad l_{d}=\frac{d_{b} F_{y}}{25 \sqrt{f_{c}^{\prime}}}$ or 12 in. minimum
\#7 bars and larger: $\quad l_{d}=\frac{d_{b} F_{y}}{20 \sqrt{f_{c}^{\prime}}} \quad$ or 12 in. minimum

Development Length in Compression

$$
l_{d}=\frac{0.02 d_{b} F_{y}}{\sqrt{f_{c}^{\prime}}} \leq 0.0003 d_{b} F_{y}
$$

Hook Bends and Extensions
The minimum hook length is $l_{d h}=\frac{1200 d_{b}}{\sqrt{f_{c}^{\prime}}}$

Figure 9-17: Minimum requirements for 90° bar hooks.
Figure 9-18: Minimum requirements for 180° bar hooks.

Modulus of Elasticity \& Deflection

E_{c} for deflection calculations can be used with the transformed section modulus in the elastic range. After that, the cracked section modulus is calculated and E_{c} is adjusted.

Code values:

$$
E_{c}=57,000 \sqrt{f_{c}^{\prime}} \text { (normal weight) } \quad E_{c}=w_{c}^{1.5} 33 \sqrt{f_{c}^{\prime}}, w_{c}=90 \mathrm{lb} / \mathrm{ft}^{3}-160 \mathrm{lb} / f \mathrm{f}^{3}
$$

Deflections of beams and one-way slabs need not be computed if the overall member thickness meets the minimum specified by the code, and are shown in Table 9.5(a) (see Slabs).

Criteria for Flat Slab \& Plate System Design

Systems with slabs and supporting beams, joists or columns typically have multiple bays. The horizontal elements can act as one-way or two-way systems. Most often the flexure resisting elements are continuous, having positive and negative bending moments. These moment and shear values can be found using beam tables, or from code specified approximate design factors. Flat slab two-way systems have drop panels (for shear), while flat plates do not.

Two way shear at columns is resisted by the thickness of the slab at a perimeter of $d / 2$ away from the face of the support by the shear stress \times cross section area: $V_{c}=v_{c} \times b_{o} d$ The shear stress (two way) $v_{c}=4 \sqrt{f_{c}^{\prime}}$ so $\phi V_{c}=\phi 4 \sqrt{f_{c}^{\prime}} b_{o} d$

$$
\text { where } \quad b_{o}=\text { perimeter length. }
$$

Criteria for Column Design

(American Concrete Institute) ACI 318-11 Code and Commentary:

$$
\begin{aligned}
& P_{u} \leq \phi_{\mathrm{c}} P_{n} \quad \text { where } \\
& \qquad P_{\mathrm{u}} \text { is a factored load } \\
& \quad \phi \text { is a resistance factor } \\
& \mathrm{P}_{\mathrm{n}} \text { is the nominal load capacity (strength) }
\end{aligned}
$$

Load combinations, ex: $\quad 1.4 \mathrm{D}$ (D is dead load)

$$
1.2 \mathrm{D}+1.6 \mathrm{~L}(\mathrm{~L} \text { is live load })
$$

(W is wind load)
$0.90 \mathrm{D}+1.0 \mathrm{~W}$

$$
1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~W}
$$

For compression, $\phi_{c}=0.75$ and $\mathrm{P}_{\mathrm{n}}=0.85 \mathrm{P}_{\mathrm{o}}$ for spirally reinforced, $\phi_{c}=0.65 \mathrm{P}_{\mathrm{n}}=0.8 \mathrm{P}_{\mathrm{o}}$ for tied columns where $P_{o}=0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}$ and P_{o} is the name of the maximum axial force with no concurrent bending moment.

Columns which have reinforcement ratios, $\rho_{g}=A_{s t} / A_{g}$, in the range of 1% to 2% will usually be the most economical, with 1% as a minimum and 8% as a maximum by code..
Bars are symmetrically placed, typically.

Columns with Bending (Beam-Columns)

Concrete columns rarely see only axial force and must be designed for the combined effects of axial load and bending moment. The interaction diagram shows the reduction in axial load a column can carry with a bending moment.

Design aids commonly present the interaction diagrams in the form of load vs. equivalent eccentricity for standard column sizes and bars used.

Eccentric Design

The strength interaction diagram is dependant upon the strain developed in the steel reinforcement.

If the strain in the steel is less than the yield stress, the section is said to be compression controlled.

Below the transition zone, where the steel starts to yield, and when the net tensile strain in the reinforcement exceeds 0.005 the section is said to be tension controlled. This is a ductile condition and is preferred.

Figure 5-3 Transition Stages on Interaction Diagram

Rigid Frames

Monolithically cast frames with beams and column elements will have members with shear, bending and axial loads. Because the joints can rotate, the effective length must be determined from methods like that presented in the handout on Rigid Frames. The charts for evaluating k for non-sway and sway frames can be found in the ACI code.

Figure 13.6.1 Typical strength interaction diagram for axial compression and bending moment about one axis. Transition zone is where $\boldsymbol{\epsilon}_{y} \leq \boldsymbol{\epsilon}_{\mathrm{t}} \leq 0.005$.

Frame Columns

Because joints can rotate in frames, the effective length of the column in a frame is harder to determine. The stiffness (EI/L) of each member in a joint determines how rigid or flexible it is. To find k , the relative stiffness, G or Ψ, must be found for both ends, plotted on the alignment charts, and connected by a line for braced and unbraced fames.

$$
G=\Psi=\frac{\Sigma E I / l_{c}}{\Sigma E I / l_{b}}
$$

where
$\mathrm{E}=$ modulus of elasticity for a member
I = moment of inertia of for a member
$l_{c}=$ length of the column from center to center

$l_{\mathrm{b}}=$ length of the beam from center to center

- For pinned connections we typically use a value of 10 for Ψ.
- For fixed connections we typically use a value of 1 for Ψ.

Braced - non-sway frame

Unbraced - sway frame

Factored Moment Resistance of Concrete Beams, $\phi M_{n}(\mathbf{k}-\mathrm{ft})$ with $\boldsymbol{f}^{\prime}{ }_{c}=\mathbf{4 k s i}, f_{y}=\mathbf{6 0} \mathbf{k s i}{ }^{\mathrm{a}}$

$b x d$ (in)	Approximate Values for a / d		
	0.1	0.2	0.3
	Approximate Values for ρ		
	0.0057	0.01133	0.017
10×14	2 \#6	2 \#8	3 \#8
	53	90	127
10×18	3 \#5	2 \#9	3 \#9
	72	146	207
10×22	2 \#7	3 \#8	(3 \#10)
	113	211	321
12×16	2 \#7	3 \#8	4 \#8
	82	154	193
12×20	2 \#8	3 \#9	4 \#9
	135	243	306
12×24	2 \#8	3 \#9	(4 \#10)
	162	292	466
15×20	3 \#7	4 \#8	5 \#9
	154	256	383
15×25	3 \#8	4 \#9	4 \#11
	253	405	597
15×30	3 \#8	5 \#9	(5 \#11)
	304	608	895
18×24	3 \#8	5 \#9	6 \#10
	243	486	700
18×30	3 \#9	6 \#9	(6 \#11)
	385	729	1074
18×36	3 \#10	6 \#10	(7 \#11)
	586	1111	1504
20×30	3 \# 10	7 \# 9	6 \# 11
	489	851	1074
20×35	4 \#9	5 \#11	(7 \#11)
	599	1106	1462
20×40	6 \#8	6 \#11	(9 \#11)
	811	1516	2148
24×32	6 \#8	7 \#10	(8 \#11)
	648	1152	1528
24×40	6 \#9	7 \#11	(10 \#11)
	1026	1769	2387
24×48	5 \#10	(8 \#11)	(13 \#11)
	1303	2426	3723

${ }^{a}$ Table yields values of factored moment resistance in kip-ft with reinforcement indicated. Reinforcement choices shown in parentheses require greater width of beam or use of two stack layers of bars. (Adapted and corrected from Simplified Engineering for Architects and Builders, $11^{\text {th }}$ ed, Ambrose and Tripeny, 2010.

Beam / One-Way Slab Design Flow Chart

Beam / One-Way Slab Design Flow Chart - continued

