ARCH 631. Study Guide for Exam 2

This guide is not providing "answers" for the conceptual questions. It is a list of topical concepts and their application you should be familiar with. It is an *aid* to help prepare for the mid-term exam.

Covers material of Lectures 7, 8, 10, 11, 12, 13 & 14

General: Rigid Frames

	Rigid vs. non-rigid pinned frames		Effect of relative frame member stiffnesses
	Rigid frame behavior		Stiffness (relative to EI/L through Δ , or AE/L
	Connection types and load/moment transfer		through δ)
	Moment "redistribution"		Sidesway
	Methods for analysis of statically indeterminate frames		Cantilever method with lateral forces
General: Plates & Grids			
	Plate vs. slab		Simplified Frame Analysis & "Strip" method
	One-way vs. two-way behavior		Design shear & moments (spans "integral with
	Aspect ratio (with respect to bay dimensions)		support", first interior support, etc.)
	Space frame vs. grid		Direct design method for two-way slabs & M_o
	Unit width for design		Solutions for large shear at space frame supports
	Moment redistribution		Moment of inertia with respect to folded plates
	Pan joists, T sections & effective width of flange		Reason for stiffening of folded plates
	Drop panels		Live load reduction
	Boundary conditions & effect on deflections / moments		Thickness as a fraction of bay span (L)
			"Punching" shear at columns
	Point loads and effect on deflections / moments		
General: Membranes & Shells			

- □ Appropriate loads & primary stresses
- □ Air-supported vs. air-inflated
- $\hfill\square$ Materials, durability, and punctures
- \Box Profiles and wind effects
- □ Shell vs. not shell (stresses are key)
- □ Meridional vs. Hoop
- □ Shell forces vs stresses (with respect to thickness and strips)

- □ Tension vs. compression rings
- □ "Thrust"
- □ Buckling and "snap-through"
- □ Anticlastic shell properties
- \Box Pressure vs. membrane stress
- \Box Curvature and membrane stress
- □ Hyperbolic paraboloid

General: Planning

- □ One-way vs. two-way systems \Box Options for corners, large spaces, etc. \square "Collectors" □ Integration with building services □ Vertical & horizontal grid considerations □ Fire safety and planning □ Long span considerations "Weakness" Areas (Tolerances, Lateral bracing, etc.) □ Effect of loading types on system efficiency Reinforced Concrete □ Cast-in place, precast, prestressed (pretensioned), Use of Strength Design Curves (R_n) post-tensioned Purpose of stirrup requirement when concrete □ Constituents to make concrete capacity is available □ Slump Diagonal tension cracks □ Behavior in compression vs. tension of concrete Stirrup strength □ Design methodology Shrinkage \Box 28-day compressive strength Concrete cover and purpose □ Term "working stress design" #3 bar (meaning of the numeral) □ Creep Purpose of compression reinforcement □ Camber (hogging & sagging) T-section behavior and stresses in flange □ "composite" One-way joists, vs. beams, vs. girders □ Transformed section "Spandrel" □ Depth of the Whitney stress One-way slab design and "unit" strip □ Moment capacity (or ultimate strength) vs. One-way vs. two-way slabs nominal moment (or strength) One-way vs. two-way shear (load & strength) □ Factored design moment (or shear or) Plate vs. Flat Slab □ Design stress in reinforcement Openings in slabs and control of openings □ Design stress in concrete Continuous beam analysis with coefficients □ Reinforcement grades □ Clear span / span length □ Reinforcement ratio □ Columns with ties vs. spirals (stresses, factors, □ Effective depth vs. depth of a beam etc.) □ Under-reinforced vs. over-reinforced \Box Interaction diagrams (P- Δ)
- □ Basis of maximum steel (related to evident strain)
- □ Purpose of minimum reinforcement area requirement
- \Box Why development length is necessary

□ Live load reduction

□ Location of maximum shear in beams

- $\square Beam self weight relationship to material density (150 lb/ft³)$
- □ Design vs. analysis