ARCH 631 F2009abn

ARCH 631. Study Guide for Final Examination

This guide is not providing "answers" for the conceptual questions. It is a list of topical concepts and their application you should be familiar with. It is an *aid* to help prepare for the final exam.

Material not previously covered by mid-term exam study has bold section headers.

Ste	Steel Design					
	Design methodologies		Area of web			
	Steel grades (standard properties)		Connection types			
	Yield strength vs. ultimate strength		Weld strengths			
	Local buckling in web & flange		Throat thickness			
	Bearing on flange		Fillet, butt, plug, slot			
	Plastic section modulus		Coping			
	Plastic moment & plastic hinges		Tension member			
	Braced vs. unbraced length		Simple shear connector			
	Use of beam moment capacity charts		Single vs. double shear			
	Equivalent uniform load based on maximum		Capacity of a connection			
	moment		Block Shear Rupture			
	Slenderness criteria & l/r		Design vs. analysis			
	with respect to least radius of gyration		Decking			
	Compact section criteria		Gusset plates			
	Use of column load capacity charts		Web stiffener plates			
	Beam-columns		Open web joists and use of design charts			
	Interaction equations (P-Δ)		Equivalent uniform load from maximum			
	W (first number meaning) x (second number meaning)		moment			
	Bolt designations		Column base plate dimensioning			
	Gross area		Beam shear splice			
	Effective net area		Eccentrically loaded bolt group			
Μc	asonry Design					
	Design methodology		Moisture and clay unit durability			
	The fact that masonry can resist tension without steel!		Combined stresses for walls			
			Virtual eccentricity			
	Brick, block, CMU, etc.		Lintels and arching action + load distribution			
	Grout vs. mortar		Interaction equations (P- Δ)			
	MASONWORK Massachusette (adams)		Pilasters			
	Masonry strength (prisms)		Design vs. analysis			
	Grouting cover and purpose					

ARCH 631 Study Guide: Final F2009abn

Fo	Foundation Design				
	Design methodology (separate from reinforced		Kern and pressure distribution		
	concrete design)		Shear resistance and bearing resistance of piles		
	Net soil pressure vs. allowable soil pressure		Design vs. analysis		
	Overburden		Reinforced concrete design for shear and		
	Sliding and overturning (stability)		bending		
	Settlement		One-way vs. two-way shear (load & strength)		
	Active vs. passive pressure		Location of maximum shear in beams & footings		
	Foundation types		Location of maximum moment in footings		
	Foundation parts (key, counterfort, etc)		Embedment length		
	Shallow foundations vs. deep foundations		Bearing and dowels		
Str	ructural Supervision				
	Steel grade		Clear (of grout) cavities for moisture		
	Concrete mix design & slump		Protection of timber from weather		
	Concrete cylinders		Bracing during construction		
	Masonry prisms		Tolerances for assembly		
Ge	neral: Systems				
	One-way vs. two-way systems		Pinned arches (2 vs. 3) & rigid arches		
	Truss configurations and assumptions for		"Thrust"		
_	analysis		Rigid vs. non-rigid pinned frames		
	Zero-force member		Rigid frame behavior		
	Special truss member configurations at joints and conditions		Connection types and load/moment transfer		
	Basis of graphical truss analysis (aka Maxwell's		Moment "redistribution"		
	diagram)		Methods for analysis of statically indeterminate frames		
	Compound truss		Effect of relative frame member stiffnesses		
	"Cable" truss members		Types and purpose of bracing		
	"Shear & Moments" in parallel chord trusses		Sidesway		
	Lenticular truss		Bearing, shear, curtain walls		
	Vierendeel "truss"		Cantilever method with lateral forces		
	Catenary shape, sag		Candiever incured with fateral forces		
	Cable-stayed				
Ge	General: Columns				
	Stability		Combined bending and compression –		
	Buckling vs. crushing	_	interaction equations or diagrams		
	Slenderness		P-∆ effect		
	Critical Buckling and Euler's Formula		Eccentricity		
	Effective length, K & bracing (end conditions)		Kern		
	Beam-Columns (eccentric loading)				

Sta	Statics & Mechanics				
	Vectors and scalars		Effect of moments on moment diagram		
	Parallelogram law		Location of zero shear (x) and relation to		
	Tip-to-tail method		maximum moment		
	Internal vs. external forces		Slope relationships with integration		
	Tension and compression		Normal stress (compression & tension)		
	Resultant of a force		Shear stress (non beams)		
	Component of a force		Bearing stress		
	Moment of a force		Bending & shear stress (beams)		
	Moment of a distributed load		Torsional (shear) stress (with respect to shape and where maximum occurs)		
	Moment Couple		Relation of strain to stress & Modulus of		
	Equivalent Force Systems		Elasticity		
	Concurrent vs non-concurrent force systems		Brittle, Ductile & Semi-brittle material behavior		
	Equilibrium		Yield strength (or point & proportional limit)		
	Newton's First Law		Elastic vs. plastic range		
	Direction and type of force in a cable with		Ultimate strength		
_	relation to geometry		Strength vs. stress		
	Free Body Diagram		Rupture / Fatigue behavior		
Ш	Reactions at a support and relationship to motion prevented		Creep		
	Statically Determinate vs. Indeterminate		Orthotropic vs. Isotropic vs. Anisotropic materials		
	Two-force bodies and relationship to loads		Stress concentration		
	Three-force bodies		Thermal vs. elastic strains		
	Fixed-end moment reactions		Geometric constraints		
	Pin connections		Serviceability		
	Method of Joints		Buckling		
	Method of Sections		Deflections & elongation		
	Actions vs. reactions		Stiffness (relative to EI/L through Δ , or AE/L		
	Internal shear, axial force & bending moment	Ш	through δ)		
	Inflection point on moment diagram		Superpositioning		
	Effect of forces on shear diagram		Single vs. double shear		
General: Planning					
	One-way vs. two-way systems		Options for corners, large spaces, etc.		
	"Collectors"		Integration with building services		
	Vertical & horizontal grid considerations		Fire safety and planning		
	Long span considerations		"Weakness" Areas (Tolerances, Lateral bracing,		
	Effect of loading types on system efficiency		etc.)		

Ge	neral: Design					
	Allowable Stress Design		Building codes vs. standards vs. structural codes			
	Load and Resistance Factor Design		Stability of systems & members			
	Factored loads		Design vs. analysis			
	Resistance Factors		Efficiency			
	"Design" values vs. "Capacity"		Load tracing & (con)tributary width (vs. area)			
	Factor of Safety		Static vs. dynamic loads			
	Density of materials and relation to weight		Equivalent static wind load & pressure			
	Load types (and directions)		Concentrated loads			
_	(like D, L, S)		$Distributed\ loads-uniform\ /\ non-uniform$			
	Minimum loads (building codes)		Result of acceleration on a mass and Weight			
	Load combinations		Period of vibration, frequency, damping &			
	Serviceability and limits (ex. ponding)		resonance			
	Live load reduction					
C_{α}	neral: Beams					
			OL OL III			
	Simply supported		Shear flow and shear center			
	Overhang		Lateral buckling (and bracing)			
	Cantilever		Torsion stresses and cross section shape			
	Continuous		Stress types in beams			
	w vs. W		Self-weight			
	Equivalent center of load area		Deflections & superpositioning (+ units)			
	Built-up shape		Use of Beam Diagrams and Formulas			
	Centroid, moment of inertia, Q , radius of gyration		Principal stresses			
	Neutral axis, section modulus, extreme fiber		Efficient cross-section shapes			
	Negative area method		Shaping a beam along the length for efficiency.			
	Parallel axis theorem		Location of supports and efficiency.			
	Maximum bending stress (& location along		"Effective length" and points of inflection			
_	length and in cross section)	Ц	Methods for analysis of statically indeterminate beams			
	Maximum shear stress (& location along length and in cross section)		Support settlements and stress redistribution			
	Maximum shear stress by beam shape (proper equations)	Ц	Loading patterns for spans			
Ge	General: Membranes & Shells					
	Appropriate loads & primary stresses		Tension vs. compression rings			
	Air-supported vs. air-inflated		"Thrust"			
	Materials, durability, and punctures		Buckling and "snap-through"			
	Profiles and wind effects		Anticlastic shell properties			
	Shell vs. not shell (stresses are key)		Pressure vs. membrane stress			
	Meridional vs. Hoop		Curvature and membrane stress			
	Shell forces vs stresses (with respect to thickness and strips)		Hyperbolic paraboloid			

Ge	neral: Plates & Grids	
	Plate vs. slab	Simplified Frame Analysis & "Strip" method
	One-way vs. two-way behavior	Design shear & moments (spans "integral with
	Aspect ratio (with respect to bay dimensions)	support", first interior support, etc.)
	Space frame vs. grid	Direct design method for two-way slabs & M _o
	Unit width for design	Solutions for large shear at space frame supports
	Moment redistribution	Moment of inertia with respect to folded plates
	Pan joists, T sections & effective width of flange	Reason for stiffening of folded plates
	Drop panels	Live load reduction
	Boundary conditions & effect on deflections / moments	Thickness as a fraction of bay span (L) "Punching" shear at columns
	Point loads and effect on deflections / moments	
Re	inforced Concrete	
	Cast-in place, precast, prestressed (pretensioned),	Use of Strength Design Curves (R _n)
	post-tensioned Constituents to make concrete	Purpose of stirrup requirement when concrete capacity is available
	Slump	Diagonal tension cracks
	Behavior in compression vs. tension of concrete	Stirrup strength
	Design methodology	Shrinkage
	28-day compressive strength	Concrete cover and purpose
	Term "working stress design"	#3 bar (meaning of the numeral)
	Creep	Purpose of compression reinforcement
	Camber (hogging & sagging)	T-section behavior and stresses in flange
	"composite"	One-way joists, vs. beams, vs. girders
	Transformed section	"Spandrel"
	Depth of the Whitney stress	One-way slab design and "unit" strip
	Moment capacity (or ultimate strength) vs.	One-way vs. two-way slabs
	nominal moment (or strength)	One-way vs. two-way shear (load & strength)
	Factored design moment (or shear or)	Plate vs. Flat Slab
	Design stress in reinforcement	Continuous beam analysis with coefficients
	Design stress in concrete	Clear span / span length
	Reinforcement grades	Columns with ties vs. spirals (stresses, factors,
	Reinforcement ratio	etc.)
	Effective depth vs. depth of a beam	Interaction diagrams (P-Δ)
	Under-reinforced vs. over-reinforced	Location of maximum shear in beams
	Balanced-steel condition	Live load reduction
	Purpose of minimum reinforcement area requirement	Beam self weight relationship to material density (150 lb/ft ³)
	Why development length is necessary	Design vs. analysis

Ge	neral: Lateral Loads			
	Lateral stability vs. gravity loading		Selective placement of horizontal and vertical rigid planes	
	Resisting mechanisms		Member orientation for frame action	
	"In-plane" forces		Mechanism choices with building height	
	Load transfer and shear planes		Behavior of multistory frames under lateral load.	
	Torsional deformations		Behavior of "tubes"	
	Horizontal vs. vertical shear planes		Serviceability issues, dampers	
	Diaphragm action		Serviceability issues, dampers	
	Diaphragms, shear walls, bracing, frame action, drag struts, chevron, knee, etc.			
На	zards Design			
	Equivalent static wind pressure, direction, size		Overturning	
П	with respect to building height, formula		Resonance, frequency, period of vibration,	
	Wind speed & 50 year return period Vortex shedding		damping Stiffness - lateral and torsional	
	Flutter	_	Center of mass, center of rigidity	
	Windward, leeward		Drift and shear distribution by floor mass	
	Flood zones & "100 year flood"		Pounding, re-entrant corners, soft stories	
	Hydrostatic pressure calculation (linear with		Seismic joints, base isolation, tuned mass	
	depth of water by density = γ h)		dampers	
	Dynamic loads		Period length relationship to stiffness	
	Fault zones, focus (hypocenter), epicenter		"Spring-mass" assembly model	
	Magnitude, duration, intensity of ground motion		Redundancy and continuity	
	Liquefaction, landslides, subsidence, tsunami		Non-structural elements contribution to stiffness	
	Inertial forces (mass, acceleration)		Spectrum or spectral response	
	Base shear and code formulas		NEHRP (actual name and function)	
General: Connections and Tension Members				
	Normal stress (compression & tension)		Forces and stresses resisted by nails, adhesives,	
	Shear stress (non beams)		split ring connectors, bolts, etc.	
	Bearing stress		Rupture vs. yielding in steel	
	Pinned joint vs. rigid joint		Bolt designations	
	Single shear vs. double shear		Weld strengths	
	Simple shear connector		Throat thickness	
	Connected area for longitudinal shear stress		Fillet, butt, plug, slot	
	Calculation		Coping Plack sheer rupture	
	Nail capacity and pitch for resisting longitudinal shear		Block shear rupture Web "crippling"	
	Effective area vs. net area vs. gross area of tension member		The cripping	

Timber Design			
	Lumber vs. engineered timber characteristics		Column stability factor, F _{CE} & 1/d
	(ex: glulam)		Interaction equations (P- Δ)
	Light-frame vs. heavy timber construction		Connection stresses
	Lumber grading		Design vs. analysis
	Various strengths (directionality, wood type, etc.)		Bolt designations
П	Built-up member types		Effective net area
_	Design methodologies and obtaining allowed		Connection types
	stresses (adjustment factors - duration, multiple member use)		Single vs. double shear
			Bolt capacity charts and relation to wood
	Creep		strengths
	Nominal dimensions		Allowable shear capacity charts for diaphragms
	Beam self weight with respect to material density (variable for wood types)		Chord forces in diaphragms