Loads

Live Loads:

Dead Loads:

Snow on Roof: 30 lb/ft^2 (1.44 kPa)

Wind: 20 lb/ft^2 (0.96 kPa)

Roofing: 8 lb/ft^2 (0.38 kPa)

Ceiling: 7 lb/ft^2 (0.34 kPa) Total: $18 \text{ lb/ft}^2 (0.86 \text{ kPa})$

Estimated decking: $3 \text{ lb/ft}^2 (0.14 \text{ l})$

A36 steel for the connection angles a

 $(F_v = 36 \text{ ksi}, F_u = 58 \text{ ksi})$ and A992 (

for the beams and columns ($F_v = 50$ K series open web joists and roof de

Case Study in Steel

adapted from Structural Design Guide, Hoffman, Gouwens, Gustafson & Rice., 2nd ed.

Building description

The building is a one-story steel structure, typical of an office building. The figure shows that it has three 30 ft. bays in the short direction and a large number of bays in the long direction. Some options for the structural system include fully restrained with rigid connections and fixed column bases, simple framing with "pinned" connections and column bases requiring bracing against sideway, and simple framing with continuous beams and shear connections, pinned column bases and bracing against sidesway. This last situation is the one we'll evaluate as shown in Figure 2.5(c).

3 (2) (1) **B**5 **B4 B6** 0 30-**B**5 **B6** (E) 1 1 30'-0" JOISTS JOISTS JOISTS **B**5 **B6** 84 F 0-30 R4 **B5** 86 \bigcirc 30'-0" 30'-0' 30'-0' JOISTS O 6'-0' SECTION X-X TYPICAL FRAME

Materials

Decking selection is typically allowable stress design. Tables will give allowable total uniform load (taking self weight into account) based on stresses and deflection criteria for typical spans and how many spans are supported. The table (and

Figure 2.5(c) Type SF - cantilever-suspended span system, braced against sidesway

description) for a Vulcraft 1.0 E deck is provided.

Areas in gray are governed by live load roof deflection.

The total load with snow and roofing = 30 psf + 8 psf = 38 psf.

VERTICAL LOADS FOR TYPE 1.0E

	Deck	Max.				Allowal	ole Total (De	ead + Live)	Uniform Loa	d (PSF)					
No. of		SDI Const.		Span (ftin.) C. to C. of Support											
Spans	Туре	Span	2'-6	3'-0	3'-6	4'-0	4'-6	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6		
	E26	2'-10	178	107	71	51	39	31	26	22	20	18	16		
	E24	3'-5	249	148	97	68	51	40	32	27	24	21	19		
1	E22	3'-10	316	187	122	85	63	48	39	32	27	24	21		
	E20	4'-2	379	224	145	100	73	56	45	37	31	27	24		
	E26	3'-4	273	189	139	107	81	62	49	40	34	29	25		
	E24	4'-0	396	275	202	153	111	83	65	52	43	37	32		
2	E22	4'-6	515	357	263	190	137	102	79	63	52	44	37		
	E20	5'-0	634	440	323	227	162	121	94	74	61	51	43		
	E26	3'-4	310	198	128	89	66	51	40	33	28	25	22		
	E24	4'-0	469	276	177	122	89	67	53	43	36	31	27		
3	E22	4'-6	588	344	221	151	109	82	64	52	43	36	31		
	E20	5'-0	707	413	264	180	129	97	75	60	50	42	36		

Notes: 1. Load tables are calculated using sectional properties based on the steel design thickness shown in the Steel Deck Institute (SDI) Design Manual.

 Loads shown in the shaded areas are governed by the live load deflection not in excess of 1/240 of the span. A dead load of 10 PSF has been included.

Open Web Joists:

Open web joist selection is either based on allowable stress design or LRFD resistance for flexure (*not for deflection*). The total <u>factored</u> distributed load for joists at 6 ft on center will be: Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-0

356'

1.0 E

-For 33" Cover

32" or 33'

 $w_{\text{total}} = (1.2 \times 18 \text{lb/ft}^2 + 1.6 \times 30 \text{ lb/ft}^2)(6 \text{ ft}) + 1.2(8 \text{ lb/ft estimated})$ = 427.2 lb/ft (with 1.2D + 1.6(L, or L_r, or S, or R) by catalogue

 $w_{live} = 30 \ lb/ft^2(6 \ ft) = 180 \ lb/ft$

			Ва	sed or	STAN a 50	IDARD ksi Ma	LOAD	TABLE Yield S	FOR	OPEN th - Lo	WEB ads Sh	STEEL own i	JOIS n Pour	TS, K-S nds per	ERIES	r Foot	(plf)				
Joist Designation	18K3	18K4	18K5	18K6	18K7	18K9	18K10	20K3	20K4	20K5	20K6	20K7	20K9	20K10	22K4	22K5	22K6	22K7	22K9	22K10	22K11
Depth (In.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt. (lbs./ft.)	6.6	7.2	7.7	8.5	9	10.2	11.7	6.7	7.6	8.2	8.9	9.3	10.8	12.2	8	8.8	9.2	9.7	11.3	12.6	13.8
Span (ft.) ↓ 18	825 550	825 550	825 550	825 550	825 550	825 550	825 550							_							
19	771 494	825 523	825 523	825 523	825 523	825 523	825 523														
20	694 423	825 490	825 490	825 490	825 490	825 490	825 490	775 517	825 550	825 550	825 550	825 550	825 550	825 550							
21	630 364	759 426	825 460	825 460	825 460	825 460	825 460	702 453	825 520	825 520	825 520	825 520	825 520	825 520							
22	573 316	690 370	777	825 438	825 438	825 438	825 438	639 393	771	825 490	825 490	825 490	825 490	825 490	825 548						
23	523 276	630 323	709	774	825 418	825 418	825 418	583 344	703	793 451	825 468	825 468	825 468	825 468	777	825 518	825 518	825 518	825 518	825 518	825 518
24	480	577 284	651 318	709	789	825	825 396	535 302	645 353	727	792 430	825 448	825 448	825 448	712	804 483	825 495	825 495	825 495	825 495	825 495
25	441	532 250	600 281	652 305	727	825	825 377	493	594 312	669 350	729	811 421	825 426	825 426	657 381	739 427	805 464	825 474	825 474	825 474	825 474
26	408	492	553 249	603 271	672 299	807	825	456	549 277	618 310	673 337	750	825 405	825 405	606	682 379	744	825 454	825 454	825 454	825 454
27	378	454	513 222	558 241	622 267	747	825 347	421	508 247	573 277	624 301	694 333	825	825 389	561 301	633 337	688 367	768	825 432	825 432	825
28	351	423	477	519	577	694 282	822	391 189	472	532 248	579	645 298	775	825 375	522	588	640 328	712	825	825	825
29	327	394 159	444	483	538 215	646 254	766	364	439	495	540 242	601 268	723	825 359	486	547 272	597 295	664 327	798	825	825
30	304	367	414	451	502 194	603 229	715	340	411	462	504	561 242	675	799	453	511	556 266	619 295	745	825	825
31	285 111	343 130	387 146	421 158	469 175	564 207	669 243	318 138	384 162	433 182	471 198	525 219	631 259	748 304	424	478	520 241	580 267	697 316	825 369	825 369

Deflection will limit the selection, and the most lightweight choice is the 22K4 which weighs approximately 8 lb/ft. Special provisions for bridging are required for the shaded area lengths and sections.

Continuous Beams:

LRFD design is required for the remaining structural steel for the combinations of load involving Dead, Snow and Wind. The bracing must be designed to resist the lateral wind load.

The load values are:

 $\begin{array}{ll} \mbox{for D:} & w_D = 18 \ lb/ft^2 \cdot 30 \ ft + (8 \ lb/ft \cdot 30 \ ft)/ \ 6 \ ft = 580 \ lb/ft \\ \mbox{for S:} & w_S = 30 \ lb/ft^2 \cdot 30 \ ft = 900 \ lb/ft \\ \mbox{for W:} & w_W = 20 \ lb/ft^2 \cdot 30 \ ft = 600 \ lb/ft \ (up \ or \ down) \\ & \ and \ laterally \ V = 600 \ lb/ft(15ft/2) = 4500 \ lb \\ \ These \ DO \ NOT \ consider \ self \ weight \ of \ the \ beam. \\ \end{array}$

The applicable combinations for the tributary width of 30 ft. are:

$$\begin{array}{ll} 1.4D & w_u = 1.4(580 \ \text{lb/ft}) = 812 \ \text{lb/ft} \\ 1.2D + 1.6L + 0.5(L_r \ or \ S \ or \ R) & w_u = 1.2(580 \ \text{lb/ft}) + 0.5(900 \ \text{lb/ft}) = 1146 \ \text{lb/ft} \\ 1.2D + 1.6(L_r \ or \ S \ or \ R) + (L \ or \ 0.5W) & w_u = 1.2(580 \ \text{lb/ft}) + 1.6(900 \ \text{lb/ft}) + 0.5(600 \ \text{lb/ft}) = \underline{2436 \ \text{lb/ft}} \\ 1.2D + 1.0W + L + 0.5(L_r \ or \ S \ or \ R) & w_u = 1.2(580 \ \text{lb/ft}) + 1.0(600 \ \text{lb/ft}) + 0.5(900 \ \text{lb/ft}) = 1746 \ \text{lb/ft} \\ 1.2D + 1.0E + L + 0.25S & w_u = 1.2(580 \ \text{lb/ft}) + 0.25(900 \ \text{lb/ft}) = 921 \ \text{lb/ft} \\ 0.9D + 1.0W & w_u = 0.9(580 \ \text{lb/ft}) + 1.0(-600 \ \text{lb/ft}) \ [uplift] = -78 \ \text{lb/ft} \ (up) \end{array}$$

L, R, L_r , & E & don't exist for our case.

For the largest load case, the shear & bending moment diagrams are:

For the beams, we know that the maximum unbraced length is 6 ft. For the middle 6 feet of the end span, the moment is nearly uniform, so $C_b = 1$ is acceptable ($C_b = 1.08$ for constant moment). For the interior span, C_b is nearly 1 as well.

Choosing a W18x35 ($M_u = 229$ k-ft) for the end beams, and a W16x26 ($M_u = 147.5$ k-ft) for the interior beam, the self weight can be included in the total weight. The diagrams change to:

Check beam shear: $V_u \leq \phi_v V_n = 1.0(0.6F_{vw}A_w)$

Note Set 22

Check deflection (NO LOAD FACTORS) for total and live load (gravity and snow).

Exterior Beams and Interior Beam: worst deflection is from no live load on the center span:

Maximum $\Delta_{total} = 3.20$ in. in end spans and 1.87 in. at midspan

Is $\Delta_{\text{total}} \le L/240 = 360 \text{ in.}/240 = 1.5 \text{ in.}?$ NO GOOD We need an I about $(3.20in./1.5in.)(510 in.^4) = 1088 in.^4$ for the ends, and similarly, about 375.2 in⁴ for the mid section.

Maximum $\Delta_{\text{live}} = 2.55$ in. in end spans and 2.48 in. at midspan			
Is $\Delta_{\text{live}} \le L/360 = 360 \text{ in.}/360 = 1.0 \text{ in.}$? NO GOOD	$Z_x - US$ (in. ³)	$I_x - US$ (in. ⁴)	Section
We need an I about $(2.55 \text{ in.}/1.0 \text{ in.})(510 \text{ in.}^4) = 1300.5 \text{ in.}^4$ for the	144	1330	W21X62
ends, and similarly about 746.5 in ^{4} for the mid section.	139	881	W14X82
	133	1350	W24X55
Live load governs.	132	1070	W18X65
	131	740	W12X87
	130	954	W16X67
The W24x55 is the most economical out of the sections for the ends	129	623	W10X100
shown with hold type in the group with $L = 1330$ in ⁴	129	1170	W21X57
shown with bold type in the group, with $I_{\chi} = 1550$ m.	126	1140	W21X55
The W21 x 44 is the most economical out of the sections for the ends	126	795	W14X74
shown with hold type in the group, with $I = 843$ in ⁴	123	984	W18X60
shown with bold type in the group, with $T_x = 645$ in.	118	662	W12X79
Note $A = 0.7$ is a solution in the solution of the solution	115	722	W14X68
Now, $\Delta_{\text{live}} = 0.7$ in., which is less than allowable (by a bit).	113	534	W10X88
We could probably go with the next most economical (because we	112	890	W18X55
have software to do the analysis) with a W21x55 and W18x40 which	110	984	W21X50
results in $\Lambda_{\rm ev} = 0.06$ in 1	108	597	W12X72
Tesuits in $\Delta_{\text{live}} = 0.50$ in.:	107	959	W21X48
	105	758	W16X57
	102	640	W14X61
	100	800	W18X50
	96.8	455	W10X77
	95.5	533	W12X65
	95.4	843	W21X44
	91.7	659	W16X50
	90.6	712	W18X46
	86.5	541	W14X53
	86.4	475	W12X58
	85.2	394	W10X68
	82.1	586	W16X45

78.4

78.1

77.3

74.4

612

484

425

341

W18X40

W14X48

W12X53

W10X60

Columns:

The load in the interior columns: $P_u = 79$ k (sum of the shears). This column will see minimal eccentricity from the difference in shear and half the column depth as the moment arm.

The load in the exterior columns: $P_u = 33$ k. These columns will see some eccentricity from the beam shear connections. We can determine this by using half the column depth as the eccentricity distance.

The effective length of the columns is 15 ft (no intermediate bracing). Table 4-1 shows design strength in kips for W8 shapes (the smallest). The lightest section at 15 feet has a capacity of 230 k; much greater than what we need even with eccentricity.

The exterior column connection moment (unmagnified) when the W8x31 depth = 8.0in

$$(33k)(\frac{8.0in}{2})(\frac{1ft}{12in}) = = 11.0^{\text{k-ft.}}$$

The capacity of a W8x31 with an unbraced length of 15 ft (from another beam chart) = $114^{\text{k-ft}}$.

For
$$\frac{P_r}{P_c} < 0.2$$
: $\frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0$

$$\frac{33k}{230k} = 0.14 < 0.2: \qquad \frac{33k}{2(230k)} + \left(\frac{11.0^{k-ft}}{114^{k-ft}}\right) = 0.168 \le 1.0$$

so OK for eccentric loading of the beam-column (but we knew that).

Beam Shear Splice Connection:

For this all-bolted single-plate shear splice, $R_u = 33 \text{ k}$

W21x55:
$$d = 20.8$$
 in., $t_w = 0.375$ in.
W18x40: $d = 17.9$ in., $t_w = 0.315$ in.

The plate material is A36 with $F_y = 36$ ksi and $F_u = 58$ ksi. We need to check that we can fit a plate within the fillets and provide enough distance from the last holes to the edge.

For the W18x40, T = 15.5 in., which limits the plate height.

For a plate, s (hole spacing) = 3" and minimum edge distance is $1\frac{1}{4}$ ".

		•	S	
3-	⊕ <u>++</u> ⊕!!	•		V

Table 4–1 (continue	d)
Available Strengt	h in
Axial Compression	, kips
F = 50 ksi W Shapes	

Sha	ape	W8	×				
W	l/ft	3	5	31			
Design		P_n/Ω_c	¢cPn	P_n/Ω_c	¢c₽n		
Dea	ыуп	ASD	LRFD	ASD	LRFD		
	0	308	463	273	411		
o least radius of gyration r_y	6	281	423	249	374		
	7	272	409	241	362		
	8	262	394	232	348		
	9	251	377	222	333		
	10	239	359	211	317		
	11	226	340	200	301		
	12	213	321	189	283		
	13	200	301	177	266		
	14	187	281	165	248		
5	15	174	261	153	230		
spec	16	160	241	141	212		
5	17	147	221	130	195		
Ę	18	135	203	118	178		
2	19	123	184	108	162		
1	20	111	166	97.2	146		
s E	22	91.5	138	80.3	121		
Bui	24	76.9	116	67.5	101		
ele	26	65.5	98.5	57.5	86.5		
tiv.	28	56.5	84.9	49.6	74.5		
ffec	30	49.2	74.0	43.2	64.9		
ш	32	43.3	65.0	38.0	57.1		
	34	78965	1.41.13	18253			

For ³/₄ in. diameter A325-N bolts and standard holes without a concern for deformation of the holes, the capacity per bolt is:

shear:
$$: R_u \le \phi_v R_n \quad \phi = 0.75, \ R_n = F_n A_b$$
, where $F_n = 54$ ksi
 $33k \le n(0.75)(54ksi) \left[\frac{\pi(0.75in)^2}{4}\right]$
so $n \ge 1.84$. Use 2 bolts (1@3 in. + 2@1.25 \approx 5.5 in. < 15.5 in.)

bearing for 2 rows of bolts:

depends on thickness of thinnest web (t=0.315 in.) and the connected material

$$R_{\mu} \le \phi R_n$$
 $\phi = 0.75, R_n = 1.5L_c t F_{\mu} \le 3.0 dt F_{\mu}$

 $L_c = 1.75$ in. from the vertical edge of the beam to the edge of a hole

$$33k \le 2^{bolts} [0.75(1.5)(1.75in)(0.315in)(65ksi) = 80.6 \text{ k}$$
$$\le 2^{bolts} [0.75(3)(0.75in)(0.315in)(65ksi) = 69.1 \text{ k OK}$$

If the spacing between the holes across the splice is 4 in., the eccentricity, e_x , is 2 inches. We need to find C, which represents the number of bolts that are effective in resisting the eccentric shear force.

R

 r_n is the nominal shear per bolt:

$$C_{min} = \frac{33k}{0.75(54ksi)^{(0.75in)^2} \pi/4} = 1.84 \quad \text{(which we found as } n\text{)}$$

C off the table is 2.54 bolts which is more than the minimum of 1.84 (which is why we have 2). OK. (*The available strength with* ϕ_{r_n} found in Table 7-1 is 2.54x17.9k = 45.5k)

If the plate is 3/8 in. thick x 8 in. wide x 5.5 in. tall, check *bolt bearing on plate:*

$$\phi R_n = 2.4 dt F_u$$
 (per bolt)
2 bolts[2.4(0.75 in.)(0.375 in.)(58 ksi) = 78.3 k > 33 k OK

Check *flexure of the plate:*

 $\frac{\text{design moment:}}{\text{yielding capacity:}} \qquad M_u = \frac{R_u e}{2} = \frac{33k \times 4in}{2} = 66.0 \text{ k-in}$ $\frac{\psi(1)}{2} = 61.0 \text{ k-in} \text{ section, } 3/8 \text{ in. thick})$ $0.9(36ksi) \left\lfloor \frac{0.375in(5.5in)^2}{6} \right\rfloor = 61.25 \text{ k-in} > 66.0 \text{ k-in} \text{ NOT OK}$ $\frac{\psi(1)}{6} = 0.75 \text{ since} = \frac{V_u s_{uet}}{C} \text{ and can be looked up or calculated} = 1.74 \text{ in}^3$ $0.75(58ksi)(1.74in^3) = 75.7 \text{ k-in} > 66.0 \text{ k-in} \text{ OK}$

Check shear yielding of the plate: $R_u \le \phi R_n$ $\phi = 1.00$ $R_n = 0.6F_y A_g$ (1.00)[0.6(36 ksi)(6 in.)(0.375 in.)] = 48.6 k > 33 k OK

Check shear rupture of the plate: $R_u \le \phi R_n$ $\phi = 0.75$ $R_n = 0.6F_u A_{nv}$

for $\frac{3}{4}$ " diameter bolts, the effective hole width is (0.75 + 1/8) = 0.875 in.: $(0.75)[0.6(58 \text{ ksi})(6 \text{ in.} - 2 \times 0.875 \text{ in.})(0.375 \text{ in.})] = 41.6 \text{ k} > 33 \text{ k}$ OK

Check block shear rupture of the plate: $R_u \leq \phi R_n$ $\phi = 0.75$

$$R_{n} = 0.6F_{u}A_{nv} + U_{bs}F_{u}A_{nt} \le 0.6F_{y}A_{gv} + U_{bs}F_{u}A_{nt}$$

with $U_{bs} = 0.5$ when the tensile stress is non-uniform. (The tensile stress switches direction across the splice.) (and assuming 2 in. of width to the center of the bolt hole)

$$R_{n} = 0.60(58ksi)(0.375in)[1.5in + 3in - 1.5^{holes}(0.875)] + 0.5(58ksi)(0.375in)(2in - \frac{0.875in}{2}) = 58.6.9k \le 0.6(36ksi)(0.375in)(1.5in + 3in) + 0.5(36ksi)(0.375in)(2in - \frac{0.875in}{2}) = 47.0k$$

$$33 \text{ k} < 0.75(47.0 \text{ k}) = 35.2 \text{ k}$$
 OK

Column Base Plate:

Column base plates are designed for bearing on the concrete (concrete capacity) and plastic hinge development from flexure because the column "punches" down the plate and it could bend upward near the edges of the column (shown as $0.8b_f$ and 0.95d). The plate dimensions are B and N. The concrete has a compressive strength, $f'_c = 3 \text{ ksi}$.

Figure 5.6. Column base plate dimensions

For W8 x 31: d = 8.0 in., $b_f = 8.0$ in., and if we provide width to put in bolt holes, we could use a 12 in. by 12 in. plate (allowing about 2 inches each side). We will look at the interior column load of 79 k.

minimum thickness:
$$t_{min} = l \sqrt{\frac{2P_u}{0.9F_y BN}}$$

where *l* is the larger of *m*, *n* and $\lambda n'$

$$m = (N - 0.95d)/2 = (12 \text{ in.} - 0.95 \text{ x } 8.0 \text{ in.})/2 = 2.2 \text{ in.}$$
$$n = (B - 0.8b_f)/2 = (12 \text{ in.} - 0.8 \text{ x } 8.0 \text{ in.})/2 = 2.8 \text{ in.}$$
$$n' = \frac{\sqrt{db_f}}{4} = \frac{\sqrt{8.0in \cdot 8.0in}}{4} = 2.0 \text{ in.}$$

 λ is derived from a term *X* which takes the bounding area of the column, the perimeter, the axial force, and the concrete compressive strength into account:

$$X = \frac{4db_f}{(d+b_f)^2} \cdot \frac{P_u}{\phi_c P_p} = \frac{4db_f}{(d+b_f)^2} \cdot \frac{P_u}{\phi_c (0.85f'_c)BN} = \frac{4 \cdot 8.0in \cdot 8.0in}{(8.0in+8.0in)^2} \cdot \frac{79k}{0.6(0.85 \cdot 3ksi)12in \cdot 12in}$$
$$= 0.359$$

$$\lambda = \frac{2\sqrt{X}}{(1+\sqrt{1-X})} \le 1 \qquad = \frac{2\sqrt{0.359}}{(1+\sqrt{1-0.359})} = 0.666 \text{ so } \lambda n' = (0.666)(2.0 \text{ in.}) = 1.33 \text{ in.}$$

therefor: l = 2.8 in.:

$$t_p = l \sqrt{\frac{2P_u}{0.9F_y BN}} = (2.8in) \sqrt{\frac{2 \cdot 79k}{0.9(36ksi)(12in)(12in)}} = 0.515$$
 in.

Use a 9/16 in. thick plate.

The anchor bolts must also be able to resist lateral shear. There also is friction between the steel and concrete to help. The International Building Code provided specifications for minimum edge distances and anchorage.

Continuous Beam Over Interior Column:

The design for this connection will involve a bearing plate at the top of the column, with a minimum number of bolts through the beam flanges to the plate. Because there will be high local compression, stiffener plates for the web will need to be added (refer to a plate girder design). Flexure with a reduced cross section area of the flanges should be checked.

