Examples: Steel

Example 1 (AISC Design Examples vV13.0)

Example F.1-1a W-Shape Flexural Member Design in Strong-Axis Bending, Continuously Braced.

Given:

Select an ASTM A992 W-shape beam with a simple span of 35 feet. Limit the member to a maximum nominal depth of 18 in. Limit the live load deflection to L/360. The nominal loads are a uniform dead load of 0.45 kip/ft and a uniform live load of 0.75 kip/ft. Assume the beam is continuously braced.

Solution:

```
Material Properties:
ASTM A992 F_v = 50 \text{ ksi}
```

Calculate the required flexural strength

LRFD	ASD
$w_u = 1.2(0.450 \text{ kip/ft}) + 1.6 (0.750 \text{ kip/ft})$	$w_a = 0.450 \text{ kip/ft} + 0.750 \text{ kip/ft}$
= 1.74 kip/ft	= 1.20 kip/ft
$M_u = \frac{1.74 \text{kip/ft} \left(35.0 \text{ ft}\right)^2}{8} = 266 \text{ kip-ft}$	$M_a = \frac{1.20 \text{kip/ft} (35.0 \text{ft})^2}{8} = 184 \text{kip-ft}$

 $F_{u} = 65 \text{ ksi}$

Calculate the required moment of inertia for live-load deflection criterion of L/360

$$\Delta_{max} = \frac{L}{360} = \frac{35.0 \text{ ft}(12 \text{ in./ft})}{360} = 1.17 \text{ in.}$$

$$I_{x(reqd)} = \frac{5wl^4}{384E\Delta_{max}} = \frac{5(0.750 \text{ kip/ft})(35.0 \text{ ft})^4(12 \text{ in./ft})^3}{384 (29,000 \text{ ksi})(1.17 \text{ in.})} = 748 \text{ in.}^4$$
Manual
Table 3-23
Diagram 1

Select a W18×50 from Table 3-2

Per the User Note in Section F2, the section is compact. Since the beam is continuously braced and compact, only the yielding limit state applies.

LRFD	ASD
$\phi_b M_n = \phi_b M_{px} = 379 \text{ kip-ft} > 266 \text{ kip-ft} \textbf{o.k.}$	$\frac{M_n}{\Omega_b} = \frac{M_{px}}{\Omega_b} = 252 \text{ kip-ft} > 184 \text{ kip-ft} \textbf{o.k.}$
$I_x = 800 \text{ in.}^4 > 748 \text{ in.}^4$ o.k.	

Manual Table 3-2

Manual Table 3-2

Manual Table 2-3

Example 1 (continued)

Table 3–2 (continued) $F_y = 50 \text{ ksi}$ W Shapes Z												
Selection by Z_x X												
Ŋ.	R 7	M_{px}/Ω_b	ф _{<i>b</i>} <i>М_{рх}</i>	M_{rx}/Ω_b	ф _bM_{rx}	l	BF			1	V_{nx}/Ω_v	φ , V _{nx}
Shape	^Z x	kip-ft	kip-ft	t kip-ft	kip-ft	kips	kips	Lp	L, ft	I _x in. ⁴	kips ASD	kips LRFD
	in. ³	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft				
N21×48 ^f	107	265	398	162	244	9.78	14.7	6.09	16.6	959	144	217
N16×57	105	262	394	161	242	7.98	12.0	5.65	18.3	758	141	212
V14×61	102	254	383	161	242	4.96	7.46	8.65	27.5	640	104	156
V18×50	< 101	252	379	155	233	8.69	13.1	5.83	17.0	800	128	192
V10×77	97.6	244	366	150	225	2.59	3.90	9.18	45.2	455	112	169
W12×65 ^f	96.8	237	356	154	231	3.60	5.41	11.9	35.1	533	94.5	142
W21×44	95.4	238	358	143	214	11.2	16.8	4.45	13.0	843	145	217
N16×50	92.0	230	345	141	213	7.59	11.4	5.62	17.2	659	124	185
V18×46	90.7	226	340	138	207	9.71	14.6	4.56	13.7	712	130	195
V14×53	87.1	217	327	136	204	5.27	7.93	6.78	22.2	541	103	155
V12×58	86.4	216	324	136	205	3.76	5.66	8.87	29.9	475	87.8	132
N10×68	85.3	213	320	132	199	2.57	3.86	9.15	40.6	394	97.8	147
V16×45	82.3	205	309	127	191	7.16	10.8	5.55	16.5	586	111	167
N18×40	78.4	196	294	119	180	8.86	13.3	4.49	13.1	612	113	169
W14×48	78.4	196	294	123	184	5.10	7.66	6.75	21.1	484	93.8	141
W12×53	77.9	194	292	123	185	3.65	5.48	8.76	28.2	425	83.2	125
W10×60	74.6	186	280	116	175	2.53	3.80	9.08	36.6	341	85.8	129
ASD	LRFD	^f Shape e	xceeds c	ompact lin	nit for flex	ure with /	$F_{v} = 50 \text{ ks}$		64			
$Ω_b = 1.67$ $Ω_y = 1.50$	$\begin{array}{l} \varphi_{\textit{b}} = 0.90 \\ \varphi_{\textit{v}} = 1.00 \end{array}$			r fine 'n			,					

I required is in this grouping, with the W21x44 (bold) the most economical. But this section must be 18 inches maximum, and the W18 x 46 does not have enough (even though it has enough moment capacity of 340 k-ft ($\phi_b M_{px}$)

Look to the next section above for a W18 with I > 748 in⁴.

Example F.1-2a W-Shape Flexural Member Design in Strong-Axis Bending, Braced at Third Points

Given:

Verify the strength of the W18×50 beam selected in Example F.1-1a if the beam is braced at the ends and third points rather than continuously braced.

Beam Loading & Bracing Diagram (bracing at ends and third points)

Solution:

Required flexural strength at midspan from Example F.1-1a

LRFD	ASD
$M_u = 266$ kip-ft	$M_a = 184$ kip-ft

Manual

Table 3-1

Example 1 (continued)

$$L_b = \frac{35.0 \text{ ft}}{3} = 11.7 \text{ ft}$$

By inspection, the middle segment will govern. For a uniformly loaded beam braced at the ends and third points, $C_b = 1.01$ in the middle segment. Conservatively neglect this small adjustment in this case.

Obtain the available strength from Table 3-10

Enter Table 3-10 and find the intersection of the curve for the $W18 \times 50$ with an unbraced length of 11.7 ft. Obtain the available strength from the appropriate vertical scale to the left.

LRFD	ASD	
$\phi_{\rm b}M_n \approx 302 \text{ kip-ft} > 266 \text{ kip-ft}$ o.k.	$\frac{M_n}{\Omega_b} \approx 201 \text{kip-ft} > 184 \text{kip-ft} \textbf{o.k.}$	Manual Table 3-10

For F1-1a, the unbraced length is zero. There is no zero on the chart, so the far left is used starting at the moment required of 266 k-ft. When a W18 is not encountered with a greater moment capacity going up on the page, going to the right will intersect with a W18 line.

For F1-2a, the unbraced length is 11.7 ft. The same procedure applies, starting at a moment required of 266 k-ft. If no match is close to the

Example 2 (LRFD)

U.S. CUSTOMARY UNITS AND (METRIC UNITS) Factored Load diagram per ASCE 7 2.3.2(3) 1.2D + 1.6S

Joist manufacturer to design joist to support factored loads as shown.

Joist Supplier to design joist to support loads as shown above.

Total Load =
$$\frac{256}{2}(8) + (288 + 72)30 + 600 + 960$$

+ 360 = 13,744 lbs.
$$R_{L} = \frac{256}{2} \left[\frac{30 - \frac{8}{3}}{30} \right] + \frac{(288 + 72)(30)}{2} + 600 \left[\frac{9}{30} \right]$$

+ 960 $\left[\frac{7}{30} \right] + 660 \left[\frac{3}{30} \right] =$

Assume
$$R_R = \frac{W_{e1}(L)}{2}$$
, $W_{e1} = \frac{2(6971)}{30} = 465$ lbs/ft

- Point of Max. Mom. = Point of Zero Shear(V) = L₁ (dist. from rt. end of Jst)
 - $$\label{eq:V} \begin{split} V &= Zero = 6971 \ \ \ (\ 360 + 600 + 960 \) \ \ (\ 288 + 72)(L_1) \\ L_1 &= 14.03 \ \ tt. \end{split}$$
- M @ L₁ = 6971(14.03) 360(11.03) -

M = 48,634 ft. lbs.

Assume M = $\frac{W_{e2}(L)^2}{8}$, $W_{e2} = \frac{8(48.634)}{(30)^2} = 432.3$ lbs./ft. Using $W_{e1} = 465$ LB/ft. @ SPAN = 30', and D = 18"

Select 18K7 for total load (502) and live load (180) and call it: 18K9SP

(c) Special Considerations

The **specifying professional** shall indicate on the construction documents special considerations including:

- a) Profiles for non-standard joist and Joist Girder configurations (Standard joist and Joist Girder configurations are as indicated in the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption).
- b) Oversized or other non-standard web openings
- c) Extended ends
- d) Deflection criteria for live and total loads for non-SJI standard joists
- e) Non-SJI standard bridging

LRFD STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES Based on a 50 ksi Maximum Yield Strength – Loads shown in Pounds per Linear Foot (plf)

Joist Designation	18K3	18K4	18K5	18K6	18K7	18K9	18K10
Depth (In.)	18	18	18	18	18	18	18
Approx. Wt. (lbs./ft.)	6.6	7.2	7.7	8.5	9	10.2	11.7
Span (ft.)							
↓ I							
18	825	825	825	825	825	825	825
	550	550	550	550	550	550	550
19	771	825	825	825	825	825	825
	494	523	523	523	523	523	523
20	694	825	825	825	825	825	825
	423	490	490	490	490	490	490
21	630	759	825	825	825	825	825
	364	426	460	460	460	460	460
22	573	690	777	825	825	825	825
	316	370	414	438	438	438	438
23	523	630	709	774	825	825	825
	276	323	362	393	418	418	418
24	480	577	651	709	789	825	825
	242	284	318	345	382	396	396
25	441	532	600	652	727	825	825
	214	250	281	305	337	377	377
26	408	492	553	603	672	807	825
	190	222	249	271	299	354	361
27	378	454	513	558	622	747	825
	169	198	222	241	267	315	347
28	351	423	477	519	577	694	822
	151	177	199	216	239	282	331
29	327	394	444	483	538	646	766
	136	159	179	194	215	254	298
30	304	367	414	451	502	603	715
	123	144	161	175	194	229	269
31	285	343	387	421	469	564	669
	111	130	146	158	175	207	243

- Top values are total factored distributed load from strength and deflection criteria.
- Values below in gray are for live load deflection limit (unfactored).

2

Example 3 (AISC Design Examples vV13.0)

Example E.1b W-Shape Column Design with Intermediate Bracing

Given:

Redesign the column from Example E.1a assuming the column is laterally braced about the y-y axis and torsionally braced at the midpoint.

Solution:

Calculate the required strength

LRFD	ASD
$P_u = 1.2(140 \text{ kips}) + 1.6(420 \text{ kips}) = 840 \text{ kips}$	$P_a = 140$ kips + 420 kips = 560 kips

Select a column using Manual Table 4-1.

For a pinned-pinned condition, K = 1.0

Since the unbraced lengths differ in the two axes, select the member using the y-y axis then verify the strength in the x-x axis.

Enter Table 4-1 with a y-y axis effective length, KL_y , of 15 ft and proceed across the table until reaching a shape with an available strength that equals or exceeds the required strength. Try a W14×90. A 15 ft long W14×90 provides an available strength in the y-y direction of

LRFD	ASD
$\phi P_n = 1000 \text{ kips}$	$P_n/\Omega = 667$ kips

The r_x/r_y ratio for this column, shown at the bottom of Manual Table 4-1, is 1.66. The equivalent y-y axis effective length for strong axis buckling is computed as

$$KL = \frac{30.0 \text{ ft}}{1.66} = 18 \text{ ft}$$

From the table, the available strength of a W14×90 with an effective length of 18 ft is

LRFD		ASD		
$\phi_c P_n = 928 \text{ kips} > 840 \text{ kips}$	o.k.	$P_n/\Omega_c = 618 \text{ kips} > 560 \text{ kips}$	0.k.	Manual Table 4-1

The available compression strength is governed by the x-x axis flexural buckling limit state.

Commentary Table C-C2.2

 $P_0 = 140 \text{ kips}$

= 420 kips

Ŗ

Braced Y-direction

only

15 ft = 30 ft

₽

S

Example 3 (continued)

					W	Sha	pes		a an estat			W14	
Shaj	pe						W1	4 ×					, i
Wt/	ft	145		132		120 10		09	99		9	0	
Desi	gn	P_n/Ω_c	ф _с Р _п	P_n/Ω_c	ф <i>сР</i> _п	P_n/Ω_c	$P_n/\Omega_c \phi_c P_n$		ф _с Р _п	$P_n/\Omega_c \phi_c P_n$		P_n/Ω_c	ф _с Р _п
-		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI
ctive length KL (ft) with respect to least radius of gyration $r_{\rm y}$	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32	1250 1240 1220 1210 1200 1180 1160 1140 1120 1140 1120 1080 1050 1030 1030 979 926 871 815 759 702 647	1870 1860 1860 1840 1820 1800 1770 1740 1720 1690 1650 1650 1650 1620 1550 1510 1470 1310 1230 1140 1060 972	1130 1120 1120 1110 1090 1080 1060 1040 1020 1000 982 959 936 912 887 862 809 756 702 647 594 541	1700 1680 1660 1640 1620 1590 1570 1540 1510 1480 1440 1440 1370 13300 1300 1220 1140 1050 973 892 814	1030 1020 1010 995 981 965 949 931 912 893 872 851 829 806 783 735 685 636 586 586 537 489	1550 1550 1530 1510 1470 1450 1470 1450 1470 1470 1480 1370 1340 1310 1280 1210 1180 1210 1180 1030 956 881 807 735	934 924 914 902 889 875 860 844 827 809 790 771 750 709 665 620 575 530 485 442	1440 1400 1390 1370 1360 1340 1220 1270 1240 1220 1190 1160 1160 1100 1070 932 864 797 730 664	849 840 831 820 808 795 781 767 751 734 717 699 681 662 642 662 642 602 562 520 479 438 399	1280 1260 1250 1230 1210 1200 1170 1150 1170 1150 1130 1100 1080 1050 1020 995 996 844 782 720 659 599	752 771 763 754 745 734 722 709 696 682 667 651 635 618 600 583 546 509 471 434 397 361	113C 1116C 1115C 1113C 1112C 1109C 109C 109C 109C 109C 109C 109C 10
Effe	34 36 38 40	592 540 489 441	890 811 734 663	491 441 396 358	738 663 595 537	443 398 357 322	666 598 537 484	400 359 322 291	601 540 484 437	360 323 290 262	542 486 436 393	326 292 262 236	490 439 394 355
		Properties											
P _{wo} (kips) P _{wi} (kips/in P _{wb} (kips) P _{tb} (kips)	wo(kips) w(kips/in.) wb(kips) b(kips)		191 287 175 263 22.7 34.0 21.5 32.3 477 717 407 612 222 334 199 298	263 32.3 612 298	151 19.7 312 165	227 29.5 468 249	128 17.5 220 138	12819117.526.3220330138208	111 16.2 173 114	167 24.3 260 171	95.9 14.7 129 94.3	144 22.0 194 142	
$L_p(\Pi)$ $L_r(\Pi)$		14.1 13.3 61.7 56.0		3.3 6.0	1 5	3.2 2.0	1	3.2 8.4	1	3.5 5.3	1	5.2 2.6	
$\frac{L_r(n)}{l_r(n,4)} = \frac{L_r(n,2)}{l_r(n,4)} = \frac{L_r(n,4)}{l_r(n,1)} = \frac{L_r(n,4)}{Ratio} \frac{L_r}{r_r} \frac{L_r}{r_r} = \frac{L_r}{l_r} \frac{L_r}{l_r} \frac{L_r}{l_r} = \frac{L_r}{l_r} \frac{L_r}{l_r} \frac{L_r}{l_r} = \frac{L_r}{l_r} \frac{L_r}{l_r} \frac{L_r}{l_r} \frac{L_r}{l_r} \frac{L_r}{l_r} = \frac{L_r}{l_r} L$		01.7 30.0 42.7 38.8 1710 1530 677 548 3.98 3.76 1.59 1.67 48900 43800 19400 15700		35.3 1380 495 3.74 1.67 39500 14200		32.0 1240 447 3.73 1.67 35500 12800		43.3 29.1 1110 402 3.71 1.66 31800		42.6 26.5 999 362 3.70 1.66 28600			

AMERICAN INSTITUTE OF STEEL CONSTRUCTION INC.

Note Set 21.3

350 k

Example 4 (LRFD)

Investigate the accepatbility of a W16 x 67 used as a beam-column under the unfactored loading shown in the figure. It is A992 steel ($F_y = 50$ ksi). Assume 25% of the load is dead load with 75% live load.

SOLUTION:

DESIGN LOADS (shown on figure):

Axial load = 1.2(0.25)(350k)+1.6(0.75)(350k)=525k

Moment at joint = 1.2(0.25)(60 k-ft) + 1.6(0.75)(60 k-ft) = 90 k-ft

Determine column capacity and fraction to choose the appropriate interaction equation:

$$\frac{kL}{r_x} = \frac{15ft(12\frac{m/r_f}{r_y})}{6.96in} = 25.9 \text{ and } \frac{kL}{r_y} = \frac{15ft(12\frac{m/r_f}{r_y})}{2.46in} = 73 \text{ (governs)}$$

$$P_c = \phi_c P_n = \phi_c F_{cr} A_g = (30.5ksi)19.7in^2 = 600.85k$$

$$\frac{P_r}{P_c} = \frac{525k}{600.85k} = 0.87 > 0.2 \text{ So use } \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{uy}} + \frac{M_{uy}}{\phi_b M_{uy}}\right) \le 1.0$$

There is no bending about the y axis, so that term will not have any values.

Determine the bending moment capacity in the x direction:

The unbraced length to use the full plastic moment (L_p) is listed as 8.69 ft, and we are over that so of we don't want to determine it from formula, we can find the beam in the Available Moment vs. Unbraced Length tables. The value of ϕM_n at L_b =15 ft is 422 k-ft.

Determine the magnification factor when $M_1 = 0$, $M_2 = 90$ k-ft:

$$C_{m} = 0.6 - 0.4 \frac{M_{1}}{M_{2}} = 0.6 - \frac{0^{k-ft}}{90^{k-ft}} = 0.6 \le 1.0 \qquad P_{e1} = \frac{\pi^{2} EA}{\left(\frac{Kl}{r}\right)^{2}} = \frac{\pi^{2} (30x10^{3} ksi) 19.7 in^{2}}{(25.9)^{2}} = 8,695.4k$$
$$B_{1} = \frac{C_{m}}{1 - (P_{u}/P_{e1})} = \frac{0.6}{1 - (525k/8695.4k)} = 0.64 \ge 1.0 \qquad \text{USE 1.0} \qquad \text{Mu} = (1)90 \text{ k-ft}$$

Finally, determine the interaction value:

$$\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) = 0.87 + \frac{8}{9} \left(\frac{90^{k-ft}}{422^{k-ft}} \right) = 1.06 \le 1.0$$

This is **NOT OK.** (and outside error tolerance). The section should be larger.

525 k

525 k

350 k