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Mechanics of Materials Primer 
 

Notation: 

A = area (net = with holes, bearing = in 

contact, etc...) 

b = total width of material at a 

horizontal section 

d = diameter of a hole 

D = symbol for diameter 

E =  modulus of elasticity or Young’s 

modulus 

f = symbol for stress 

fallowable = allowable stress 

fcritical = critical buckling stress in column 

calculations from Pcritical 

fv = shear stress 

fp = bearing stress (see P) 

Fallowed = allowable stress (used by codes) 

Fconnector 
 
= shear force capacity per 

connector 

I = moment of inertia with respect to 

neutral axis bending 

J = polar moment of inertia 

K = effective length factor for columns 

L = length 

Le = effective length that can buckle for 

column design, as is e , Leffective 

M = internal bending moment, as is M’ 

n = number of connectors across a joint 

p = pitch of connector spacing 

P = name for axial force vector, as is P’ 

Pcrit = critical buckling load in column 

calculations, as is Pcritical, Pcr 

Q = first moment area about a neutral 

axis 

Qconnected = first moment area about a neutral 

axis for the connected part 

r = radius of gyration or radius of a 

hole 

S = section modulus 

t = thickness of a hole or member 

T = name for axial moment or torque 

V = internal shear force 

y = vertical distance 

 = coefficient of thermal expansion for 

a material 

  = elongation or length change 

T  = elongation due or length change 

due to temperature  

  = strain 

T = thermal strain (no units) 

  = angle of twist 

  = shear strain 

 = pi (3.1415 radians or 180) 

  = angle of principle stress 

 = slope of the beam deflection curve  

 = name for radial distance 

  = engineering symbol for normal 

stress 

  = engineering symbol for shearing 

stress 
  = displacement due to bending 

T  = change in temperature 

  = symbol for integration 

 
 

Mechanics of Materials is a basic engineering science that deals with the relation between 

externally applied load and its effect on deformable bodies.  The main purpose of Mechanics of 

Materials is to answer the question of which requirements have to be met to assure STRENGTH, 

RIGIDITY, AND STABILITY of engineering structures. 
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Normal Stress 

  

Stress that acts along an axis of a member; can be internal or external; can be compressive or 

tensile. 
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Shear Stress (non beam) 

 

Stress that acts perpendicular to an axis or length of a member, or parallel to the cross section is 

called shear stress. 

 

Shear stress cannot be assumed to be uniform, so we refer to average shearing stress. 
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Bearing Stress 

A compressive normal stress acting between two bodies. 
bearing

p
A

P
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Torsional Stress 

A shear stress caused by torsion (moment around the axis).  
J

T
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
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Bolt Shear Stress 

Single shear  - forces cause only one shear “drop” across the bolt.  
boltA

P
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Double shear  - forces cause two shear changes across the bolt. 
boltA

P
f

2
  

 

Bearing of a bolt on a bolt hole – The bearing surface can be represented by projecting the cross 

section of the bolt hole on a plane (into a rectangle).  

 

 

Bending Stress 

 

A normal stress caused by bending; can be compressive or tensile.  The stress 

at the neutral surface or neutral axis, which is the plane at the centroid of the 

cross section is zero. 
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Beam Shear Stress 

 

avevf   = 0 on the beam’s surface.  Even if Q is a maximum at y = 0, we 

don’t know that the thickness is a minimum there. 

 

 

 

 
 

 

 

Rectangular Sections 

 

maxvf   occurs at the neutral axis: 

 

 

Webs of Beams 

 

In steel W or S sections the thickness varies from the flange to the web.  We neglect the shear 

stress in the flanges and consider the shear stress in the web to be constant: 

 

 

 

 

Connectors in Bending 

 

Typical connections needing to resist shear are plates with nails or rivets or bolts in composite 

sections or splices.  The pitch (spacing) can be determined by the capacity in shear of the 

connector(s) to the shear flow over the spacing interval, p. 

where  

p = pitch length 

n = number of connectors connecting the connected area to the rest of the cross section 

F = force capacity in one connector 

Qconnected area = Aconnected area  yconnected area 

yconnected area = distance from the centroid of the connected area to the neutral axis 

 

Normal Strain 

 

In an axially loaded member, normal strain,  is the change in the length,  with respect to the 

original length, L.  
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Shearing Strain 

 

In a member loaded with shear forces, shear 

strain,  is the change in the sheared side, s 

with respect to the original height, L.  For 

small angles:  tan . 

 

 

In a member subjected to twisting, the shearing strain is a measure of the angle of twist with 

respect to the length and distance from the center, : 

 

 

Stress vs. Strain 

 

Behavior of materials can be measured by 

recording deformation with respect to the 

size of the load.  For members with constant 

cross section area, we can plot stress vs. 

strain. 

 

BRITTLE MATERIALS  - ceramics, glass, 

stone, cast iron; show abrupt fracture at 

small strains. 

 

DUCTILE MATERIALS – plastics, steel; 

show a yield point and large strains 

(considered plastic) and “necking” (give 

warning of failure) 

 

SEMI-BRITTLE MATERIALS – concrete; 

show no real yield point, small strains, but have some “strain-hardening”. 

 

Linear-Elastic Behavior 

 

In the straight portion of the stress-strain diagram, the materials are elastic, which means if they 

are loaded and unloaded no permanent deformation occurs. 

 

True Stress & Engineering Stress 

 

True stress takes into account that the area of the cross section changes with loading.  

Engineering stress uses the original area of the cross section. 

 

Hooke’s Law – Modulus of Elasticity 

 

In the linear-elastic range, the slope of the stress-strain diagram is 

constant, and has a value of E, called Modulus of 

Elasticity or Young’s Modulus. 
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Isotropic Materials – have the same E with any direction of loading. 

 

Anisotropic Materials – have different E’s with the direction of loading. 

 

Orthotropic Materials – have directionally based E’s  
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Plastic Behavior & Fatigue 

 

Permanent deformations happen outside the 

linear-elastic range and are called plastic 

deformations.  Fatigue is damage caused by 

reversal of loading. 

 

 The proportional limit (at the end of the 

elastic range) is the greatest stress valid 

using Hooke’s law. 

 

 The elastic limit is the maximum stress 

that can be applied before permanent 

deformation would appear upon 

unloading. 

 

 The yield point (at the yield stress) is where a ductile material continues to elongate without 

an increase of load.  (May not be well defined on the stress-strain plot.) 

 

 The ultimate strength is the largest stress a material will see before rupturing, also called the 

tensile strength. 

 

 The rupture strength is the stress at the point of rupture or failure.  It may not coincide with 

the ultimate strength in ductile materials.  In brittle materials, it will be the same as the 

ultimate strength. 

 

 The fatigue strength is the stress at failure when a member is subjected to reverse cycles of 

stress (up & down or compression & tension).  This can happen at much lower values than 

the ultimate strength of a material. 

 

 Toughness of a material is how much work (a combination of stress and strain) us used for 

fracture.  It is the area under the stress-strain curve. 

 

Concrete does not respond well to tension and is tested in compression.  The strength at crushing 

is called the compression strength. 

 

Materials that have time dependent elongations when loaded are said to have creep.  Concrete 

and wood creep.  Concrete also has the property of shrinking over time.  

 

 



ARCH 631 Note Set 2.2 F2011abn 

7 

Poisson’s Ratio  

 

For an isometric material that is homogeneous, the properties are the 

same for the cross section: 

 

 

There exists a linear relationship while in the linear-elastic range of 

the material between longitudinal strain and lateral strain: 

 

 

 

 

Positive strain results from an increase in length with respect to overall length. 

Negative strain results from a decrease in length with respect to overall length. 

 

 is the Poisson’s ratio and has a value between 0 and ½, depending on the material 

 

 

Relation of Stress to Strain 
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Stress Concentrations 

 

In some sudden changes of cross section, the stress concentration changes (and is why we used 

average normal stress).  Examples are sharp notches, or holes or corners. 

 

 

Plane of  Maximum Stress   

 

When both normal stress and shear 

stress occur in a structural member, the 

maximum stresses can occur at some 

other planes (angle of ). 

 

 

 

Maximum Normal Stress happens at  0 AND 

Maximum Shearing Stress happens at  45  with only normal stress in the x direction. 
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Thermal Strains 

 

Physical restraints limit deformations to be the same, or sum to zero, or be proportional with 

respect to the rotation of a rigid body. 

 

We know axial stress relates to axial strain: which relates  to P 

 

Deformations can be caused by the material reacting to a change in energy with temperature.  In 

general (there are some exceptions): 

 Solid materials can contract with a decrease in temperature. 

 Solid materials can expand with an increase in temperature. 

 

The change in length per unit temperature change is the coefficient of thermal expansion, .  It 

has units of F  or C and the deformation is related by: 

 

Coefficient of Thermal Expansion 

 

Material Coefficients () 

[in./in./°F] 

Coefficients () 

[mm/mm/°C] 

 Wood 3.0 x 10
-6

 5.4 x 10
-6

 

 Glass 4.4 x 10
-6

 8.0 x 10
-6

 

 Concrete 5.5 x 10
-6

 9.9 x 10
-6

 

 Cast Iron 5.9 x 10
-6

 10.6 x 10
-6

 

 Steel 6.5 x 10
-6

 11.7 x 10
-6

 

 Wrought Iron 6.7 x 10
-6

 12.0 x 10
-6

 

 Copper 9.3 x 10
-6

 16.8 x 10
-6

 

 Bronze 10.1 x 10
-6

 18.1 x 10
-6

 

 Brass 10.4 x 10
-6

 18.8 x 10
-6

 

 Aluminum 12.8 x 10
-6

 23.1 x 10
-6

 

 

There is no stress associated with the length change with free movement, BUT if there are 

restraints, thermal deformations or strains can cause internal forces and stresses. 

 

How A Restrained Bar Feels with Thermal Strain 

 

1. Bar pushes on supports because the material needs to 

expand with an increase in temperature. 

2. Supports push back. 

3. Bar is restrained, can’t move and the reaction causes 

internal stress. 
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Thermal Strain: TT  
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Superposition Method  

 

If we want to solve a statically indeterminate problem that has extra support forces: 

 

 We can remove a support or supports that makes the problem look statically determinate 

 Replace it with a reaction and treat it like it is an applied force 

 Impose geometry restrictions that the support imposes  

 

 

Beam Deflections 

 

If the bending moment changes, M(x) across a beam of constant material and cross section  then 

the curvature will change: 

 

 

The slope of the n.a. of a beam, , will be tangent to the radius of curvature, R: 

 

The equation for deflection, y, along a beam is: 

 

 

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer 

programs can be used as well.   

 

Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range. 

 

 

Column Buckling  

 

Stability is the ability of the structure to support a specified load without undergoing 

unacceptable (or sudden) deformations.  A column loaded centrically can experience unstable 

equilibrium, called buckling, because of how tall and slender they are.  This instability is sudden 

and not good. 

 

Buckling can occur in sheets (like my “memory metal” cookie sheet), pressure vessels or slender 

(narrow) beams not braced laterally. 

 

The critical axial load to cause buckling is related to the deflected 

shape we could get (or determine from bending moment of P·) as a 

function of the end conditions. 

 

Swiss mathematician Euler determined the relationship between the 

critical buckling load, the material, section and effective length (as 

long as the material stays in the elastic range): 
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and the critical stress (if less than the normal stress) is: 
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where I=Ar
2
 and rLe  is called the slenderness ratio.  The smallest I of the section will govern. 

 

Radius of gyration is a relationship between I and A.  It is useful for 

comparing columns of different shape cross section shape. 

 

Yield Stress and Buckling Stress 

 

The two design criteria for columns are that they do not 

buckle and the strength is not exceeded.  Depending on 

slenderness, one will control over the other. 

 

 

Effective Length and Bracing 

 

Depending on the end support conditions for a column, the 

effective length can be found from the deflected shape 

(elastic equations).  If a very long column is braced 

intermittently along its length, the column length that will buckle can be determined.  The 

effective length can be found by multiplying the column length by an effective length factor, K.   

 

 LKLe 

A

I
r

A

I
r

y

y
x

x 



ARCH 631 Note Set 2.2 F2011abn 

 11 

Example 1 
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Example 2 
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Example 3 
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Example 4  
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Example 5 
Determine the deflection in the steel beam if it is a W15 x 88.  E = 30x103 ksi. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Example 6 


