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Mechanics of Materials Primer

Notation:

A = area (net = with holes, bearing = in Qconnected = First moment area about a neutral

contact, etc...)

b = total width of material at a r
horizontal section
d = diameter of a hole S
D = symbol for diameter t
E = modulus of elasticity or Young’s T
modulus \Y
f = symbol for stress y
falowable = allowable stress a
feriicat = critical buckling stress in column
calculations from Pgritical o
f, = shear stress Or
fo = bearing stress (see P)
Faioweda = allowable stress (used by codes) £
Feonnector = Shear force capacity per er
connector é
I = moment of inertia with respect to y
neutral axis bending
J = polar moment of inertia 4
K = effective length factor for columns 0
L = length
Le = effective length that can buckle for P
column design, as is 7, , Leffective o
M = internal bending moment, as is M’ -
n = number of connectors across a joint
p = pitch of connector spacing A
P = name for axial force vector, as is P’
Perit = critical buckling load in column AT
calculations, as is Peritical, Per ]
Q = first moment area about a neutral
axis

axis for the connected part
radius of gyration or radius of a
hole

section modulus

thickness of a hole or member
name for axial moment or torque
internal shear force

vertical distance

coefficient of thermal expansion for
a material

elongation or length change

= elongation due or length change

due to temperature
strain

thermal strain (no units)
angle of twist

shear strain

pi (3.1415 radians or 180°)

angle of principle stress

slope of the beam deflection curve
name for radial distance
engineering symbol for normal
stress

engineering symbol for shearing
stress

displacement due to bending

change in temperature
symbol for integration

Mechanics of Materials is a basic engineering science that deals with the relation between
externally applied load and its effect on deformable bodies. The main purpose of Mechanics of
Materials is to answer the question of which requirements have to be met to assure STRENGTH,

RIGIDITY, AND STABILITY of engineering structures.
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Normal Stress

Stress that acts along an axis of a member; can be internal or external; can be compressive or
tensile.

foge— - P
=0 =— Strength condition: T =—— < fajiowanle O Faitowed
net et

Shear Stress  (non beam)

Stress that acts perpendicular to an axis or length of a member, or parallel to the cross section is
called shear stress.

Shear stress cannot be assumed to be uniform, so we refer to average shearing stress.

o]
f=r=—— wi f=——<1 or F
Strength condition: ‘v allowable allowed
Y A g Anet
Bearing Stress
¢ P
A compressive normal stress acting between two bodies. p =
Abearing
Torsional Stress
Tp
A shear stress caused by torsion (moment around the axis). fv = T
Bolt Shear Stress
. P
Single shear - forces cause only one shear “drop” across the bolt. ' — ﬁb "
0

P
Double shear - forces cause two shear changes across the bolt. f= ﬂ bolt

Bearing of a bolt on a bolt hole — The bearing surface can be represented by projecting the cross
section of the bolt hole on a plane (into a rectangle). P P

A
Bending Stress

A normal stress caused by bending; can be compressive or tensile. The stress | zjreay,
at the neutral surface or neutral axis, which is the plane at the centroid of the ~ SVF#Ae® T
Cross section is zero.

_My_ M
o S

Figuwre 8.8 Bending stresses on seciion b-b.
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Beam Shear Stress

f, ... — 0 onthe beam’s surface. Even if Q is a maximum at y =0, we e
don’t know that the thickness is a minimum there. =

vV oV VQ

= — = f -
" AA b-AX b

Rectangular Sections

f occurs at the neutral axis: f VQ

v—max

Webs of Beams

In steel W or S sections the thickness varies from the flange to the web. We neglect the shear
stress in the flanges and consider the shear stress in the web to be constant:

A
v-max = 5 p A
Connectors in Bending
Typical connections needing to resist shear are plates with nails or rivets or bolts in composite

sections or splices. The pitch (spacing) can be determined by the capacity in shear of the
connector(s) to the shear flow over the spacing interval, p.

Vlongitudilal _ VQ nF > VQconnectedarea . p

connector —
p I '

where

p = pitch length
n = number of connectors connecting the connected area to the rest of the cross section
F = force capacity in one connector

Qconnected area — Aconnected area X Yconnected area
Yeonnected area = distance from the centroid of the connected area to the neutral axis

Normal Strain

In an axially loaded member, normal strain, ¢ is the change in the length, & with respect to the

original length, L. S
E =—

L
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) applled shaar

Shearing Strain e —

. reaction
In a member loaded with shear forces, shear : | resction }? ﬂ’f (reaulred for
. . . . , Shesr L
strain, y is the change in the sheared side, 8 /! —'-?,-'/: Jo galier
with respect to the original height, L. For retation)
P g g9 ¢ :

small angles: tang = ¢. 5, spplied snear

=)

In a member subjected to twisting, the shearing strain is a measure of the angle of twist with

respect to the length and distance from the center, p: _pd
L
Stress vs. Strain
25

Behavior of materials can be measured by T T 1 1 -
recording deformation with respect to the 1 S1EShB.h2 0

. ; CARBON)A'S
size of the load. For members with constant s 2 RALeEp |
cross section area, we can plot stress vs. \ ol !

strain.

I}

| anb N) (AT

]
sTEEL(0 454,
?4":,» (o]

BRITTLE MATERIALS - ceramics, glass,
stone, cast iron; show abrupt fracture at
small strains.

RYETVRAL
‘ :Eaé'u A
. l { { | 1' i |
| rPPUALAS FIR(carPRETSion PARALLEL TP M.\'
St Tt Bolded } S ., g
[ cPNARSTE (ZPViPR .ﬂ-su‘/N,‘i‘ l D
*—
o
S

UNIT STRESS,
»
2

DUCTILE MATERIALS - plastics, steel;
show a yield point and large strains
(considered plastic) and “necking” (give 0
warning of failure)

o
oz
or

.o
216
oL

SEMI-BRITTLE MATERIALS — concrete;
show no real yield point, small strains, but have some “strain-hardening”.

Linear-Elastic Behavior

In the straight portion of the stress-strain diagram, the materials are elastic, which means if they
are loaded and unloaded no permanent deformation occurs.

True Stress & Engineering Stress

True stress takes into account that the area of the cross section changes with loading.
Engineering stress uses the original area of the cross section.

Hooke’s Law — Modulus of Elasticity f
In the linear-elastic range, the slope of the stress-strain diagram is E
constant, and has a value of E, called Modulus of
Elasticity or Young’s Modulus. f=E-¢ 1
€
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Isotropic Materials — have the same E with any direction of loading.

Anisotropic Materials — have different E’s with the direction of loading.

Orthotropic Materials — have directionally based E’s

Table D-1 Elastic moduli of selected materials

Modulus of elasticity £

Shear modulus G

10° psi

10° psi GPa

Material 4
Aluminum 10 70 38 26 033
Aluminum alloys 10-12 70-80 3.844 26-30 033
2014-T6 10.6 73 4 28 033
6061-T6 10 70 38 26 0.33
7075-T6 104 72 39 27 033
Brick (compression) 1.5-3.5 10-24
Cast iron 12-25 80-170 45-10 31-69 0.2-0.3
Gray cast iron 14 97 5.6 39 0.25
Concrete (compression) 2644 18-30 0.1-0.2
Copper 17 115 6.2 43 035
Copper alloys 14-18 96-120 52-6.8 36-47 0.33-0.35
Brass 14-16 96-110 52-6 3641 0.34
80% Cu, 20% Zn 15 100 55 38 0.33
Naval brass 15 100 55 38 0.33
Bronze 14-17 96-120 5.2-6.3 3644 0.34
Manganese bronze 15 100 5.6 39 0.35
Glass 7-12 50-80 29-5 20-33 0.20-0.27
Magnesium 5.8 40 22 15 0.34
Nickel 30 210 114 80 0.31
Nylon 0.3-04 2-3 0.4
Rubber 0.0001-0.0006  0.001-0.004 0.00004-0.0002  0.0003-0.0014 0.44-0.50
Steel 28-32 190-220 10.8-12.3 75-85 0.28-0.30
Stone (compression)
Granite 6-10 40-70 0.2-03
Marble 7-14 50-100 0.2-0.3
Titanium 16 110 5.8 40 0.33
Titanium alloys 15-18 100-124 5.6-6.8 39-47 0.33
Tungsten 52 360 22 150 0.2
Wood (bending)
Ash 1.5-1.6 10-11
Oak 1.6-18 11-12
Southern pine 1.6-2 11-14
Wrought iron 28 190 10.9 75 0.3
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Plastic Behavior & Fatigue

STFESS -STRAIN DIAGRAM  MILD STEEL/A%G)
. - =N ; [ [ rave T
Permanent deformations happen outside the % ; (sreBss 3T e
linear-elastic range and are called plastic ?w —— A
- - - ~PrRofoiTIONAL LIM|T o
deformations. Fatigue is damage caused by - [ ~urreitigLs pon i
- w ¥
reversal of loading. ;_ e e v s g =
« The proportional limit (at the end of the v L - - -
; . . X, PLASTIC RANGE STRAIN HARDEUING RANGE
elastic range) is the greatest stress valid D R  : S - >
. s & 17 ——
using Hooke’s law. N A -

)
|

« The elastic limit is the maximum stress ;;Ag-[ e | 7
that can be applied before permanent ; B

deformation would appear upon T, - T
) & = N STRAIN IN./IN. (NeTT? scALE)
unloading.

« The yield point (at the yield stress) is where a ductile material continues to elongate without
an increase of load. (May not be well defined on the stress-strain plot.)

« The ultimate strength is the largest stress a material will see before rupturing, also called the
tensile strength.

« The rupture strength is the stress at the point of rupture or failure. It may not coincide with
the ultimate strength in ductile materials. In brittle materials, it will be the same as the
ultimate strength.

« The fatigue strength is the stress at failure when a member is subjected to reverse cycles of
stress (up & down or compression & tension). This can happen at much lower values than
the ultimate strength of a material.

« Toughness of a material is how much work (a combination of stress and strain) us used for
fracture. It is the area under the stress-strain curve.

Concrete does not respond well to tension and is tested in compression. The strength at crushing
is called the compression strength.

Materials that have time dependent elongations when loaded are said to have creep. Concrete
and wood creep. Concrete also has the property of shrinking over time.
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Poisson’s Ratio

For an isometric material that is homogeneous, the properties are the
same for the cross section:

& =&

There exists a linear relationship while in the linear-elastic range of
the material between longitudinal strain and lateral strain:

lateral strain &, g, uf,

=  =— - =——= E =& =—

axial strain &

X

Positive strain results from an increase in length with respect to overall length.
Negative strain results from a decrease in length with respect to overall length.

u is the Poisson’s ratio and has a value between 0 and Y2, depending on the material

Relation of Stress to Strain

P
; g:é and E :iso E =A which rearranges to: o PL

f_P
T A S
A L £ A AE

Stress Concentrations

In some sudden changes of cross section, the stress concentration changes (and is why we used
average normal stress). Examples are sharp notches, or holes or corners.

Plane of Maximum Stress

When both normal stress and shear

stress occur in a structural member, the [

- £ry {
maximum stresses can occur at some — |
other planes (angle of 6). i

Maximum Normal Stress happens at & = 0° AND

Maximum Shearing Stress happens at & = 45° with only normal stress in the x direction.
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Thermal Strains

Physical restraints limit deformations to be the same, or sum to zero, or be proportional with
respect to the rotation of a rigid body.

We know axial stress relates to axial strain: which relates & to P

PL
S=—

AE
Deformations can be caused by the material reacting to a change in energy with temperature. In
general (there are some exceptions):

e Solid materials can contract with a decrease in temperature.
e Solid materials can expand with an increase in temperature.

The change in length per unit temperature change is the coefficient of thermal expansion, a. It

has units of / F or /C and the deformation is related by:

Coefficient of Thermal Expansion

S =alAT )L

Material Coefficients (o)) | Coefficients (o) W e s
[in./in./°F] [mm/mm/°C] e

Wood 3.0x10° 5.4x10° B
Glass 4.4 x 10 8.0x10° . . ity
Concrete 55x10° 9.9x10° S
Cast Iron 59x10° | 10.6 x 10° Al T R
Steel 6.5 x 10° 11.7 x 10° )
Wrought Iron 6.7 x 10° 12.0 x 10°
Copper 9.3x10° 16.8 x 10
Bronze 10.1x 10_2 18.1x 10_2 Thermal Strain: & = aAT
Brass 10.4 x 10 18.8 x 10
Aluminum 12.8 x 10° 23.1x 10°

There is no stress associated with the length change with free movement, BUT if there are
restraints, thermal deformations or strains can cause internal forces and stresses.

How A Restrained Bar Feels with Thermal Strain

1. Bar pushes on supports because the material needs to
expand with an increase in temperature.

Supports push back.

3. Bar is restrained, can’t move and the reaction causes
internal stress.
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Superposition Method

If we want to solve a statically indeterminate problem that has extra support forces:

e We can remove a support or supports that makes the problem look statically determinate
e Replace it with a reaction and treat it like it is an applied force

e Impose geometry restrictions that the support imposes

1
Beam Deflections ¢ =slope = EI M (x)dx

If the bending moment changes, M(x) across a beam of constant material and cross section then
the curvature will change:

The slope of the n.a. of a beam, 6, will be tangent to the radius of curvature, R:

The equation for deflection, y, along a beam is: y=A= 1 adx ZLJ'J‘ M (x )dx
El El

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer
programs can be used as well.

Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range.

Column Buckling

Stability is the ability of the structure to support a specified load without undergoing
unacceptable (or sudden) deformations. A column loaded centrically can experience unstable
equilibrium, called buckling, because of how tall and slender they are. This instability is sudden

and not good.

Buckling can occur in sheets (like my “memory metal” cookie sheet), pressure vessels or slender
(narrow) beams not braced laterally.

The critical axial load to cause buckling is related to the deflected
shape we could get (or determine from bending moment of P-A) as a
function of the end conditions.

Swiss mathematician Euler determined the relationship between the
critical buckling load, the material, section and effective length (as
long as the material stays in the elastic range):

72El m’El  7’EA

P —a or Pcr = -

N W5
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and the critical stress (if less than the normal stress) is:
P V4 EAr 7°E

fcritical - Crzcal = 2 (L/)

where I=Ar? and L, /r is called the slenderness ratio. The smallest | of the section will govern.

Radius of gyration is a relationship between I and A. It is useful for B l,
comparing columns of different shape cross section shape. h=vax =V a

Yield Stress and Buckling Stress a{MEe) !
300 b = 950 MP:

The two design criteria for columns are that they do not N et T ;) \2”,,:,” i
buckle and the strength is not exceeded. Depending on = ; -
slenderness, one will control over the other. 200 !

|
Effective Length and Bracing 100 |- :
Depending on the end support conditions for a column, the ¥

A

)

effective length can be found from the deflected shape 0
(elastic equations). If a very long column is braced

intermittently along its length, the column length that will buckle can be determined. The
effective length can be found by multiplying the column length by an effective length factor, K.

89

L =K-L o
H.
v 2 X
() (b) (©) (d) (e) (1) R <{"/ A 4
l l l l l AR
? o3| 5 p (D5 |
ljw / \ II T / ’T__l ! [

Buckled // / \‘ / / | || —INTE KWE DIATE
shape of | / H ~ | !
column ( | ) // | % I ERACING
shown by \ | I ! sty A | s
dashed \\ \ / / / \j =
line \ / / j\ \tﬁ

w | L | 3
mr wr I
Theoretical K value 0.5 0.7 1.0 1.0 2.0 2:0) ‘)\L
~
Roft‘ommendnd d.vsuxrn values when 0.65 0.80 1.0 1.2 210 20
ideal conditions are approximated
-«{4 Rotation fixed, Translation fixed
End Rotation free, Translation fixed
conditions
code :] Rotation fixed, Translation free
7 Rotation free, Translation free

10
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Example 1
Example Problem 6.8 (Figures 6.18 to 6.20)

Apipe storage rack is used for storing pipe in a shop. The
support rack beam is fastened to the main floor beam us-
ing steel straps '5" x 2" in dimension. Round bolts are
used to fasten the strap to the floor beam in single shear.
(a) If the weight of the pipes impose a maximum tension
load of 10,000 pounds in each strap, determine the ten-
sion stress developed in the steel strap. (b) Also, what di-
ameter bolt is necessary to fasten the strap to the floor
beam if the allowable shear stress for the bolts equals
E, = 15,000'0/,, 22

Solution:

a. The tensile stress developed in the steel strap
(Figure 6.19) can be determined using the direct
stress formula.

;= P _ 100001,
A (% x 2

In mild steel (A36), the maximum permissible
tensile stress (allowable) is equal to

= 10,0000, 2

F = 22,000 psi
(allowable)

Therefore, the strap size is adequate to support
the tensile load safely.

b. To determine the size bolt necessary to carry the
load safely in single shear, the design form of the
equation must be used.

P P 10,000 Ib.
=0 Aso=—5— =067in?
fo=2 F, 15000%,2
Azﬁ; p2_ 4XA _4x067in?
4 ™ 3.14
= 0.854 in.2
D = 092in.; Use:1"d bolt.

11
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Finished Heavy timber

L- Support beam for
the rack

Figure 6.18 Pipe storage rack.

Floor

Channel section

1/2I'x2||
steel strap

Angle section
(rack beam)

Figure 6.19  Section.

fi P

1/2|v

N\ boltin

single shear
P=10k P

(@) (b)

Figure 6.20  Bolt in single shear.
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Example 2

8.11 Abuilt-up plywood box beam with 2 x 4 545 top and
bottom flanges is held together by nails. Determine the
pitch (spacing) of the nails if the beam supports a uniform
load of 200 #/ft. along the 26-foot span. Assume the nails
have a shear capacity of 80# each.

Solution:

Construct the shear (V) diagram to obtain the critical shear
condition and its location

Note that the condition of shear is critical at the support,
and the shear intensity decreases as you approach the
center line of the beam. This would indicate that the nal
spacing P varies from the support to midspan. Nails ar
closely spaced at the support, but increasing spacing
occurs toward midspan, following the shear diagram.

_vo
fu_ Ib
" m3 ' m3
Ix=(4'5 )18”)*  (35")(15") _ L2026 in*
12 12
e o
H
12
N.A. |
2,600#)(83.3in.° i .
L (2,600#)(833in°) 180.2psi Assume:

(1,202.6in.4)(%4"+ ")

F2011abn
. (W= WV#/F!
AR
- - .
i ’1‘ 'l A,
L= 26
1 1
Lx4 $4¢<
/T’F%WVM
™ Vo PLT W eeD
s HEP BA.SIPE
% - .-
T
Wa200%/FT.

F = Capacity of two nails (one each side) at the

flange; representing two shear surfaces

SHEAR PLANE S
(A=5,25iN.%)

[0

L Y=2.25

B
E
|

=

r—

Q= Ay = (5.25 in.2)(8.25”) = 433 in.?

Shear force = f, x A,

where:

(n)FI
VQ

< (2 nailsx80 #/nail)(1,202.6 in.")

.z
(n)F>fvxb><p————><bp
. S

(M2 px VI

Fe‘f-lilbfr

7 SUR-FAcE
PER NAIL

At the maximum shear location (support) where V = 2,600#

=1.71"

A, = shear area

12

(2,600# )(43.3 in.?)
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Example 3
64 THERMAL EFFECTS

Most structural materials expand in volume when sub-
jected to heat and contract when cooled. Whenever a design
prevents the change in length of a member subjected to tem-
perature variation, internal stresses develop. Sometimes
these thermal stresses may be sufficiently high to exceed the
elastic limit and cause serious damage. Free, unrestrained
members experience no stress changes with temperature
changes, but dimensional change results. For example, it is
common practice to provide expansion joints between side-
walk pavements to allow movement during hot summer
days. Prevention of expansion on a hot day would un-
doubtedly result in severe buckling of the pavement.

The dimensional change due to temperature changes is
usually described in terms of the change in a linear dimen-
sion. The change in length of a structural member, AL, is di-
rectly proportional to both the temperature change (AT)
and the original length of the member L. Thermal sensitivity,
called the coefficient of linear expansion (et), has been deter-
mined for all engineering materials (see Table 6.3). Careful
measurements have shown that the ratio of strain & to tem-
perature change AT is a constant:

_ strain _ & _98/L
* temp. change AT AT

Solving this equation for the deformation:
where:

8 =alAT
where:

a = coefficient of thermal expansion or contraction

L = original length of the member (inches or mm)
AT = change in temperature (°F or °C)

3 = total change in length (in. or mm)

Of perhaps even greater importance in engineering design
are the stresses developed by restraining the free expansion
and contraction of members subjected to temperature vari-
ations. To calculate these temperature stresses, it is useful to
determine first the free expansion or contraction of the
member involved and, second, the force and unit stress de-
veloped in forcing the member to attain its original length.
The problem from this point on is exactly the same as those
solved in the earlier portions of this chapter dealing with
axial stresses, strains, and deformations. The amount of
stress developed by restoring a bar to its original length L is:

b3 alLATE
L

f=sE=1E= = aATE

" f = aATE

Note Set 2.2

13

F2011abn

‘M

P

////(/J |

A \

A

AV AV 1

- / |\

. / |

(.Steei rail : |
L=60"

Slotted hole

Figure 6.57  Steel rail subjected to thermal
change.

Example Problem 6.21 (Figure 6.57)

A 60' length of steel rail is laid on a day when the tempera-
ture is 40°F. In order to prevent the rail from developing
any internal stresses due to a thermal increase of 60°F, what
is the amount of deformation that needs to be accommo-
dated with respect to the slotted connection at the rail
end(s)? E; = 29 x 10° ksi.

Solution:

Steel has a coefficient of expansion a = 6.5 x 107%/°F (see
Table 6.3).

Using the deformation equation due to thermal change:

8 = aLAT = (6.5 X 107°/°F)(60' x 121/, )(60°F)
= 0.28"

This amount of deformation (0.28") for a 60'-long rail sec-
tion may not seem large but if there are no provisions made
to allow movement during thermal changes, large internal
stress may result. If the rail section in this example has a
cross-sectional area of A = 10.5 in.2, determine the amount
of internal compressive stress that can result if the rail is re-
strained from moving,.

f = aATE = (6.5 X 107°/°F)(60°F)(29 X 103‘?;,,,)
11.31 ksi

(a very large internal stress which can potentially cause the
rail to buckle)
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Example 4

A short concrete column measuring 12 in. square s
reinforced with four #8 bars (A; = 4 x 0.79 in.2 = 3.14 in})
and supports an axial load of 250k. Steel bearing plates are
used top and bottom to ensure equal deformations of steel
and concrete. Calculate the stress developed in each mate-
rial if:

E.=3x 10° psi and
E, = 29 x 10° psi

Solution:

From equilibrium:
[ZF, =0]-250 k + f,A; + f. A, =0
A,=3.14in?
A.=(12"x12")-3.14in2 = 141 in.?
3.14f,+ 141 £, =250 k

From the deformation relationship:

8, =0, Ly=L.
L8 8
L L
and
€, =€,
Since
i
€
and
Li_ L
E; E
E, 29x10%(f.)
= = =067
s f"EC 3x10° Je

Substituting into the equilibrium equation:
3.14 (9.76 f.) + 141 f, = 250

30.4 f. + 141 f. = 250
1714 f, = 250

f.= 146 ksi

o f. =9.67 (1.46) ksi
f.=14.1ksi

14
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Example 5 P =20k
Determine the deflection in the steel beam if it is a W15 x 88. E = 30x10° ksi.

o=1Kg
o .. g b D
= t‘ .
lp 20k eflection Chec VA ;; .
14 14' ] 14 1 |
! f‘\\‘a I Aﬁﬂfun] = IJLS 5(0—1_‘4
] 48EI ~ 384El
+ A (20 k)(28')%(1728)
Aactual =

48(30 x 10%)(890)
5(1.06 k/ft.)(28)*(1728)

— " + 3 )
"'F‘t',\"r# 384(30 X 107)(890)
Apctual = 0.59" + 0.55" = 1.14"

o = 1,000+55=1,055 Ib/gy =1.06 k/g

Example 6
Example Problem 10.6 (Figures 10.28 to 10.30)

A W8x40 steel column supports trusses framed into its
web, which serve to fix the weak axis and light beams that
attach to the flange, simulating a pin connection about the
strong axis. If the base connection is assumed as a pin, de-
termine the critical buckling load the column is capable of
supporting.

Solution:

W8x40; (A=11.7in2 r,=353"1, =146 in?,
r,=204"1,=49.1in*

The first step is to determine the critical axis for buckling

(i.e., which one has the larger KL/r). Qe L,=34'
W8x40
Weak Axis: : column
L, = KL = 0.7 (34) = 23.8' Figure 10.28  Truss/column framing.
23.8' X 121
E_E = _.____”__i = 140
ry 2.04
Strong Axis:
o P
L.=L;, K=1.0;, KL=37 e
. N Z 7
ke _ (37 x12%) 1 i
o 3.53 - | \
i
The weak axis for this column is critical since 3 . IS
oo os X
[[] !
KL KL | ¢ /
Ty Tx f
mElL, (314229 X 10% ksi)(49.1 in.4) - \\J\ﬁ\@r 7%;% )
Pp=—07= — SR T
(KL) (23.8' x 12/ )2
(a) (b)
= 1721k _ . ‘
Figure 10.30  (a) Weak axis. (b) Strong axis.
AN 3 S
critical A 117 in2 -/ KS
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