Examples: Reinforced Concrete

Example 1

A simply supported beam 20 ft long carries a service dead load of 300 lb/ft and a live load of 500 lb/ft. Design an appropriate beam (for flexure only). Use grade 40 steel and concrete strength of 5000 psi.

SOLUTION:

Find the design moment, M_u, from the factored load combination of 1.2D + 1.6L. It is good practice to guess a beam size to include self weight in the dead load, because "service" means dead load of everything except the beam itself.

Guess a size of 10 in x 12 in. Self weight for normal weight concrete is the density of

wu = 1.2(300 lb/ft + 125 lb/ft) + 1.6(500 lb/ft) = 1310 lb/ft²

The maximum moment for a simply supported beam is $\frac{wl^2}{8}$:

$$M_{u} = \frac{w_{u}l^{2}}{8} = \frac{1310^{b}/_{ft}(20ft)^{2}}{8} 65,500 \text{ lb-ft}$$

$$M_n$$
 required = $M_u/\phi = \frac{65,500^{lb-ft}}{0.9}$ = 72,778 lb-ft

To use the design chart aid, find $R_n = \frac{M_n}{hd^2}$, estimating that d is about 1.75 inches less than h:

d = 12in – 1.75 in = 10.25 in

$$R_{n} = \frac{72,778^{lb-ft}}{(10in)(10.25in)^{2}} \cdot (12^{in}/_{ft}) = 831 \text{ psi}$$

Maximum Reinforcement Ratio p for Singly Reinforced Rectangular Beams (tensile strain = 0.005)

	$f_{c}' = 3000 \text{ psi}$	$f_{c}' = 3500 \text{ psi}$	$f_{c}' = 4000 \text{ psi}$	$f_{c}' = 5000 \text{ psi}$	$f_{c}' = 6000 \text{ psi}$
f_y	$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.80$	$\beta_1 = 0.75$
40,000 psi	0.0203	0.0237	0.0271	0.0319	0.0359
50,000 psi	0.0163	0.0190	0.0217	0.0255	0.0287
60,000 psi	0.0135	0.0158	0.0181	0.0213	0.0239
	$f_c' = 20 \text{ MPa}$	$f_c' = 25 \text{ MPa}$	$f_c' = 30 \text{ MPa}$	$f_c' = 35 \text{ MPa}$	$f_c' = 40 \text{ MPa}$
f_y	$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.85$	$\beta_1 = 0.81$	$\beta_1 = 0.77$
300 MPa	0.0181	0.0226	0.0271	0.0301	0.0327
350 MPa	0.0155	0.0194	0.0232	0.0258	0.0281
400 MPa	0.0135	0.0169	0.0203	0.0226	0.0245
500 MPa	0.0108	0.0135	0.0163	0.0181	0.0196

150 lb/ft³ multiplied by the cross section area: self weight = $150 \frac{lb}{ft^3} (10in)(12in) \cdot (\frac{1ft}{12in})^2 = 125 \text{ lb/ft}$

Table 3.7.1 Total Areas for Various Numbers of Reinforcing Bars

	Nominal		Number of Bars									
Bar Size	Diameter (in.)	Weight (lb/ft)	1	2	3	4	5	6	7	8	9	10
#3	0.375	0.376	0.11	0.22	0.33	0.44	0.55	0.66	0.77	0.88	0.99	1.10
#4	0.500	0.668	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00
#5	0.625	1.043	0.31	0.62	0.93	1.24	1.55	1.86	2.17	2.48	2.79	3.10
#6	0.750	1.502	0.44	0.88	1.32	1.76	2.20	2.64	3.08	3.52	3.96	4.40
#7	0.875	2.044	0.60	1.20	1.80	2.40	3.00	3.60	4.20	4.80	5.40	6.00
#8	1.000	2.670	0.79	1.58	2.37	3.16	3.95	4.74	5.53	6.32	7.11	7.90
#9	1.128	3.400	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
#10	1.270	4.303	1.27	2.54	3.81	5.08	6.35	7.62	8.89	10.16	11.43	12.70
#11	1.410	5.313	1.56	3.12	4.68	6.24	7.80	9.36	10.92	12.48	14.04	15.60
#14ª	1.693	7.65	2.25	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50
#18ª	2.257	13.60	4.00	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00

" #14 and #18 bars are used primarily as column reinforcement and are rarely used in beams.

p corresponds to approximately 0.023 (which is less than that for 0.005 strain of 0.0319), so the estimated area required, As, can be found:

 $A_s = \rho bd = (0.023)(10in)(10.25in) = 2.36 in^2$

The number of bars for this area can be found from handy charts.

(Whether the number of bars actually fit for the width with cover and space between bars must also be considered. If you are at ρ_{max} do not choose an area bigger than the maximum!)

Try $A_s = 2.37$ in² from 3#8 bars

d = 12 in -1.5 in (cover) $-\frac{1}{2}$ (8/8in diameter bar) = 10 in

Check ρ = 2.37 in²/(10 in)(10 in) = 0.0237 which is less than $\rho_{max-0.005}$ = 0.0319 OK (We cannot have an over reinforced beam!!)

Find the moment capacity of the beam as designed, φM_n

a =
$$A_s f_y / 0.85 f_c b = 2.37 \text{ in}^2 (40 \text{ ksi}) / [0.85(5 \text{ ksi})10 \text{ in}] = 2.23 \text{ in}$$

 $\phi M_n = \phi A_s f_y (d-a/2) = 0.9 (2.37 \text{ in}^2) (40 \text{ ksi}) (10 \text{ in} - \frac{2.23 \text{ in}}{2}) \cdot (\frac{1}{12^{\text{in}} f_t}) = 63.2 \text{ k-ft} \neq 65.5 \text{ k-ft needed} \text{ (not OK)}$

So, we can increase d to 13 in, and $\phi M_n = 70.3$ k-ft (OK). Or increase A_s to 2 # 10's (2.54 in²), for a = 2.39 in and ϕM_n of 67.1 k-ft (OK). <u>Don't exceed ρ_{max} or $\rho_{max-0.005}$ if you want to use $\phi = 0.9$ </u>

Example 2

Determine the capacity of a 16" x 16" column with 8- #10 bars, tied. Grade 40 steel and 4000 psi concrete.

SOLUTION: Find ϕP_n , with ϕ =0.65 and $P_n = 0.80P_0$ for tied columns and

$$P_o = 0.85 f_c' (A_g - A_{st}) + f_y A_{st}$$

Steel area (found from reinforcing bar table for the bar size):

$$A_{st}$$
 = 8 bars × (1.27 in²) = 10.16 in²

Concrete area (gross):

$$A_q = 16 \text{ in} \times 16 \text{ in} = 256 \text{ in}^2$$

Grade 40 reinforcement has $f_y = 40,000$ psi and $f_c' = 4000$ psi

 $\phi P_n = (0.65)(0.80)[0.85(4000 \text{ psi})(256 \text{ in}^2 - 10.16 \text{ in}^2) + (40,000 \text{ psi})(10.16 \text{ in}^2)] = 646,026 \text{ lb} = 646 \text{ kips}$

ASTM	STANDARD	REINFORCING	BARS
	01/11/07/11/0		DAILO

Bar size, no.	Nominal diameter, in.	Nominal area, in. ²	Nominal weight lb/ft	
3	0.375	0.11	0.376	
4	0.500	0.20	0.668	
5	0.625	0.31	1.043	
6	0.750	0.44	1.502	
7	0.875	. 0.60	2.044	
8	1.000	0.79	2.670	
9	1.128	1.00	3.400	
10	1.270	1.27	4.303	
11	1.410	1.56	5.313	
14	1.693	2.25	7.650	
18	2.257	4,00	13.600	