List of Symbol Definitions ``` long dimension for a section subjected to torsion (in, mm); a acceleration due to gravity, 32.17 ft/sec², 9.81 m/sec²; unit area (in², ft², mm², m²): distance used in beam formulas (ft, m); depth of the effective compression block in a concrete beam (in, mm) a area bounded by the centerline of a thin walled section subjected to torsion (in², mm²) area, often cross-sectional (in², ft², mm², m²) \boldsymbol{A} net effective area, equal to the total area ignoring any holes and modified by the lag factor, U, A_e (in^2, ft^2, mm^2, m^2) (see A_{net}) gross area, equal to the total area ignoring any holes (in², ft², mm², m²) A_g gross area subjected to shear for block shear rupture (in², ft², mm², m²) A_{gv} net effective area, equal to the gross area subtracting any holes (in², ft², mm², m²) (see A_e) A_{net} net area subjected to tension for block shear rupture (in², ft², mm², m²) A_{nt} net area subjected to shear for block shear rupture (in², ft², mm², m²) A_{n\nu} bearing area (in², ft², mm², m²) A_{n} area across the throat of a weld (in², ft², mm², m²) A_{throat} area of steel reinforcement in concrete beam design (in², ft², mm², m²) A_s area of compression steel reinforcement in concrete beam design (in², ft², mm², m²) A_{\varsigma} area of concrete shear stirrup reinforcement (in², ft², mm², m²) A_{\nu} web area in a steel beam equal to the depth x web thickness (in², ft², mm², m²) A_{web} area of column in spread footing design ((in², ft², mm², m²) A_1 projected bearing area of column load in spread footing design ((in², ft², mm², m²) A_2 ASD Allowable Stress Design h width, often cross-sectional (in, ft, mm, m); narrow dimension for a section subjected to torsion (in, mm); number of truss members; rectangular column dimension in concrete footing design (in, mm, m); distance used in beam formulas (ft, m) effective width of the flange of a concrete T beam cross section (in, mm) b_E width of the flange of a steel or concrete T beam cross section (in, mm) b_f perimeter length for two-way shear in concrete footing design (in, ft, mm, m) b_o ``` B spread footing dimension in concrete design (ft, m); dimension of a steel base plate for concrete footing design (in, mm, m) b_w B_1 factor for determining M_u for combined bending and compression width of the stem of a concrete T beam cross section (in, mm) B_s width within the longer dimension of a rectangular spread footing that reinforcement must be concentrated within for concrete design (ft, m) - c distance from the neutral axis to the top or bottom edge of a beam (in, mm, m); rectangular column dimension in concrete footing design (in, mm, m) - c_i distance from the center of a circular shape to the inner surface under torsional shear strain (in, mm, m) - c_o distance from the center of a circular shape to the outer surface under torsional shear strain (in, mm, m) - c_1 coefficient for shear stress for a rectangular bar in torsion - c_2 coefficient for shear twist for a rectangular bar in torsion - CL, ℓ center line C_D - C compression label; compression force (lb, kips, N, kN); dimension of a steel base plate for concrete footing design (in, mm, m) - C_b modification factor for LRFD steel beam design - *C_c* column slenderness classification constant for steel column design; compressive force in the concrete of a doubly reinforced concrete beam (lb, k, N, KN) - C_D load duration factor for wood design - C_F size factor for wood design - C_f form factor for circular sections or or square sections loaded in plane of diagonal for wood design - C_{fu} flat use factor for wood design - C_F size factor for wood design - C_H shear stress factor for wood design - C_i incising factor for wood design - C_L beam stability factor for wood design - C_m modification factor for combined stress in steel design - C_M wet service factor for wood design - C_p column stability factor for wood design - C_r repetitive member factor for wood design - C_{ν} web shear coefficient for steel design - C_V glulam volume factor for wood design - C_s compressive force in the compression steel of a doubly reinforced concrete beam (lb, k, N, KN) - C_t temperature factor for wood design - diameter of a circle (in, mm, m); depth, often cross-sectional (in, mm, m); perpendicular distance from a force to a point in a moment calculation (in, mm, m); critical cross section dimension of a rectangular timber column cross section related to the profile (axis) for buckling (in, mm, m); effective depth from the top of a reinforced concrete beam to the centroid of the tensile steel - (in, mm); - symbol in calculus to represent a very small change (like the greek letters for d, see $\delta \& \Delta$) - d' effective depth from the top of a reinforced concrete beam to the centroid of the compression steel (in, mm) - d_b depth of a steel W beam section (in, mm); bar diameter of concrete reinforcement (in, mm) nominal bolt diameter (in, mm) - d_f depth of a steel W column flange (in, mm) - d_x difference in the x direction between an area centroid and the centroid of the composite shape (in, mm) - d_y difference in the y direction between an area centroid and the centroid of the composite shape (in, mm) - D diameter of a circle (in, mm, m); dead load for LRFD design - DL dead load - e dimensional change to determine strain (see s or ε) (in, mm); eccentric distance of application of a force (P) from the centroid of a cross section (in, mm) - E modulus of elasticity (psi; ksi, kPa, MPa, GPa); earthquake load for LRFD design - E_c modulus of elasticity of concrete (psi; ksi, kPa, MPa, GPa) - E_s modulus of elasticity of steel (psi; ksi, kPa, MPa, GPa) - f symbol for stress (psi, ksi, kPa, MPa) symbol for function with respect to some variable; ie. f(t) - f_a calculated axial stress (psi, ksi, kPa, MPa) - f_b calculated bending stress (psi, ksi, kPa, MPa) - f_c calculated compressive stress (psi, ksi, kPa, MPa) - f'_c concrete design compressive stress (psi, ksi, kPa, MPa) - f_{cr} calculated column stress based on the critical column load P_{cr} (psi, ksi, kPa, MPa) - f_m calculated compressive stress in masonry (psi, ksi, kPa, MPa) - f'_m masonry design compressive stress (psi, ksi, kPa, MPa) - f_p calculated bearing stress (psi, ksi, kPa, MPa) - f_s calculated steel stress for reinforced masonry (psi, ksi, kPa, MPa) - f_t calculated tensile stress (psi, ksi, kPa, MPa) - f_x combined stress in the direction of the major axis of a column (psi, ksi, kPa, MPa) - f_v calculated shearing stress (psi, ksi, kPa, MPa) - f_y yield stress (psi, ksi, kPa, MPa) - F force (lb, kip, N, kN); capacity of a nail in shear (lb, kip, N, kN); hydraulic fluid load for LRFD design - F_a allowable axial stress (psi, ksi, kPa, MPa) - F_b allowable bending stress (psi, ksi, kPa, MPa) - F'_b allowable bending stress for combined stress for wood design (psi, ksi, kPa, MPa) - *F_c* allowable compressive stress (psi, ksi, kPa, MPa); critical unfactored compressive stress for LRFD steel design - $F_{c\perp}$ allowable compressive stress perpendicular to the wood grain (psi, ksi, kPa, MPa) $F_{connector}$ resistance capacity of a connector (lb, kips, N, kN) - F_{cE} intermediate compressive stress for ASD wood column design dependant on material (psi, ksi, kPa, MPa) - F_{cr} flexural buckling (column) stress in ASD and LRFD (psi, ksi, kPa, MPa) - F' allowable compressive stress for ASD wood column design (psi, ksi, kPa, MPa) - F_c^* intermediate compressive stress for ASD wood column design dependant on load duration (psi, ksi, kPa, MPa) - F_e elastic critical buckling stress is steel design - F_h force component in the horizontal direction (lb, kip, N, kN) $F_{horizontal-resist}$ resultant frictional force resisting sliding in a footing or retaining wall (lb, kip, N, kN) - F_n nominal strength in LRFD steel design (psi, ksi, kPa, MPa) nominal tension or shear strength of a bolt (psi, ksi, kPa, MPa) - F_p allowable bearing stress parallel to the wood grain (psi, ksi, kPa, MPa) $F_{sliding}$ resultant force causing sliding in a footing or retaining wall (lb, kip, N, kN) - F_t allowable tensile stress (psi, ksi, kPa, MPa) - F_{ν} allowable shear stress (psi, ksi, kPa, MPa); allowable shear stress in a welded connection; force component in the vertical direction (lb, kip, N, kN) - F_x force component in the x coordinate direction (lb, kip, N, kN) - F_w allowable weld stress (psi, ksi, kPa, MPa) - F_y force component in the y coordinate direction (lb, kip, N, kN); yield stress (psi, ksi, kPa, MPa) - F_u ultimate stress a material can sustain prior to failure (psi, ksi, kPa, MPa) - F.S. factor of safety (also see SF) - g acceleration due to gravity, 32.17 ft/sec², 9.807 m/sec²; transverse center-to-center spacing (gage) between fastener gage lines (in, mm,) - G shear modulus (psi; ksi, kPa, MPa, GPa); relative stiffness of columns to beams in a rigid connection (see Ψ) - h depth, often cross-sectional (in, ft, mm, m); height (in, ft, mm, m); ``` sag of a cable structure (ft, m); effective height of a wall or column (see \ell_a) h' effective height of a wall or column (see \ell_a) height of the web in a W section (in, ft, mm, m) (also see t_w) h_c h_f depth of a flange in a T section (in, ft, mm, m); height of a concrete spread footing (in, ft, mm, m) Н hydraulic soil load for LRFD design horizontal load from active soil or water pressure (lb, k, N, kN) H_A moment of inertia (in⁴, mm⁴, m⁴) Ι Ī moment of inertia about the centroid (in⁴, mm⁴, m⁴) Î moment of inertia about the centroid of a composite shape (in⁴, mm⁴, m⁴) moment of inertia about the centroid of a composite shape (in⁴, mm⁴, m⁴) I_c minimum moment of inertia of I_x and I_y (in⁴, mm⁴, m⁴) I_{min} moment of inertia about the centroid (in⁴, mm⁴, m⁴) I_o I_{transformed} moment of inertia of a multi-material section transformed to one material (in⁴, mm⁴, m⁴) moment of inertia with respect to an x-axis (in⁴, mm⁴, m⁴) I_{x} moment of inertia with respect to a y-axis (in⁴, mm⁴, m⁴) I_{v} multiplier by effective depth of masonry section for moment arm, jd (see d) i polar moment of inertia (in⁴, mm⁴, m⁴) J, J_o kips (1000 lb); shape factor for steel beams, M_p/M_v: effective length factor for columns (also K); distance from outer face of W flange to the web toe of fillet (in, mm); multiplier by effective depth of masonry section for neutral axis, kd kilograms kg klf kips per linear foot kiloNewtons (10³ N) kN kiloPascals (10³ Pa) kPa K effective length factor with respect to column end conditions; masonry mortar strength designation material factor for wood column design K_{cE} l. length (in, ft, mm, m); cable span (ft, m) \ell_d development length of concrete reinforcement (in, ft, mm, m) \ell_{\mathit{dc}} development length of compression reinforcement in concrete footing design (in, ft, mm, m) development length for hooks (in, ft, mm, m) l_{dh} ``` effective length that can buckle for wood column design (in, ft, mm, m) ℓ_{A} - ℓ_n effective clear span for concrete one-way slab design (ft, m) - lb pound force - L length (in, ft, mm, m); live load for LRFD design; spread footing dimension in concrete design (ft, m) - L_b unbraced length of a steel beam in LRFD design (ft, m) - maximum unbraced length of a steel beam in ASD design for compression buckling limit (ft, m); clear distance between the edge of a hole and edge of next hole or edge of the connected steel plate (in, ft, mm, m) - L_d development length of reinforcement in concrete (ft, m) - L_e effective length that can buckle for column design (ft, m) - L_m projected length for bending in concrete footing design (ft, m) - L_p limiting length of a steel beam in LRFD design for full plastic strength (ft, m) - L_r roof live load in LRFD design; limiting length of a steel beam in LRFD design for inelastic lateral-torsional buckling (ft, m) - L_u maximum unbraced length of a steel beam in ASD design for stress limit of $0.6F_v$ - L' length of the one-way shear area in concrete footing design (ft, m) - LL live load - *LRFD* Load and Resistance Factor Design - m mass (lb-mass, g, kg); meters - *mm* millimeters - M moment of a force or couple (lb-ft, kip-ft, N-m, kN-m); bending moment (lb-ft, kip-ft, N-m, kN-m); masonry mortar strength designation - M_a required bending moment in steel ASD beam design (unified) (lb-ft, kip-ft, N-m, kN-m) - M_A moment value at quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m) - M_B nominal moment capacity of a reinforced concrete beam at the balanced steel ratio (ρ_b) for limiting strains in both concrete and steel (lb-ft, kip-ft, N-m, kN-m) moment value at half point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m) - M_c nominal moment capacity of a reinforced concrete beam based on compression force in a concrete section (lb-ft, kip-ft, N-m, kN-m) (also see M_n) - M_C moment value at three quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m) - M_m moment capacity of a reinforced masonry beam (lb-ft, kip-ft, N-m, kN-m) - M_n nominal moment capacity of a reinforced concrete beam based on steel yielding and concrete design strength (lb-ft, kip-ft, N-m, kN-m) - $M_{overturning}$ resulting moment from all forces on a footing or retaining wall causing overturning (lb-ft, kip-ft, N-m, kN-m) - M_p internal bending moment when all fibers in a cross section reach the yield stress (lb-ft, kip-ft, N-m, kN-m) (also see M_{ult}) - M_r required nominal moment capacity based on design moment for reinforced concrete (lb-ft, kip-ft, N-m, kN-m) (also see M_n) - M_{resis} resulting moment from all forces on a footing or retaining wall resisting overturning (lb-ft, kip-ft, N-m, kN-m) - M_t nominal moment capacity of a reinforced concrete beam based on tensile force in the steel reinforcement (lb-ft, kip-ft, N-m, kN-m) (also see M_n) - M_u factored moment calculated in concrete design from load factors (lb-ft, kip-ft, N-m, kN-m) - M_{ult} internal bending moment when all fibers in a cross section reach the yield stress (lb-ft, kip-ft, N-m, kN-m) (also see M_p) - M_y internal bending moment when the extreme fibers in a cross section reach the yield stress (lb-ft, kip-ft, N-m, kN-m) - n number of truss joints, nails or bolts;modulus of elasticity transformation coefficient from steel to concrete - *n.a.* neutral axis (axis connecting beam cross-section centroids) - *N* Newtons; bearing-type connection with bolt threads included in shear plane; normal load (lb, kip, N, kN); bearing length on a wide flange steel section (in, mm) masonry mortar strength designation - o.c. on-center - O point of origin; masonry mortar strength designation - p pitch of nail or bolt spacing (in, mm) (also see s); pressure (lb/in², lb/ft², kip/in², kip/ft², Pa, MPa); reinforcement ratio in concrete beam design = A_s /bd (or possibly A_s /bt, A_s /bh) (no units) (see ρ) - p_A active soil pressure (lb/ft³, kN/m³) - p_b balanced reinforcement ratio in concrete beam design (see ρ_b) - plf pounds per linear foot - P force, concentrated (point) load (lb, kip, N, kN) - P_a required axial force in ASD steel design (unified) (lb, kip, N, kN) - P_c available axial strength for steel unified design (lb, kip, N, kN) - P_{cr} critical (failure) load in column calculations (lb, kip, N, kN) - P_{el} Euler buckling strength in steel unified design (lb, kip, N, kN) - P_n maximum column load capacity in LRFD steel and concrete design (lb, kip, N, kN) - P_o maximum axial force with no concurrent bending moment in a reinforced concrete column (lb, kip, N, kN) - P_r required axial force in steel unified design (lb, kip, N, kN) - P_u factored column load calculated from load factors in LRFD steel and concrete design (lb, kip, N, kN) - Pa Pascals (N/m²) - q shear flow (lb/in, kips/ft, N/m, kN/m) q_{allowed} allowable soil bearing pressure (lb/ft², kips/ft², N/m², Pa, MPa) - q_{net} net allowed soil bearing pressure (lb/ft², kips/ft², N/m, Pa, MPa) - q_u factored soil bearing pressure in concrete design from load factors (lb/ft², kips/ft², N/m, Pa, MPa) - Q first moment area used in shearing stress calculations (in³, mm³, m³) $Q_{connected}$ first moment area used in shear calculations for built-up beams (in³, mm³, m³) - Q_x first moment area about an x axis (using y distances) (in³, mm³, m³) - Q_y first moment area about an y axis (using x distances) (in³, mm³, m³) - r radius of a circle (in, mm, m); radius of gyration (in, mm, m) - r_o polar radius of gyration (in, mm, m) - r_x radius of gyration with respect to an x-axis (in, mm, m) - r_y radius of gyration with respect to a y-axis (in, mm, m) - R force, reaction or resultant (lb, kip, N, kN); radius of curvature of a beam (ft, m); rainwater or ice load for LRFD design - R_a required strength (ASD-unified) (also see V_a , M_a) - R_n concrete beam design ratio = M_u/bd^2 (lb/in², MPa) nominal value for LRFD design to be multiplied by ϕ (also see P_n , M_n) nominal value for ASD design to be divided by the safety factor Ω - R_x reaction or resultant component in the x coordinate direction (lb, kip, N, kN) - R_{v} reaction or resultant component in the y coordinate direction (lb, kip, N, kN) - strain (change in length divided by length (no units); displacement with respect to time (ft, m); length of a segment of a thin walled section (in, mm); pitch of nail spacing (in, mm) (also see p); spacing of stirrups in reinforced concrete beams (in, mm); longitudinal center-to-center spacing of any two consecutive holes (in, mm) - s.w. self-weight - section modulus (in³, mm³, m³); snow load for LRFD design; allowable strength of a weld for a given size (lb/in, kips/in, N/mm, kN/m); masonry mortar strength designation $S_{required}$ section modulus required to not exceed allowable bending stress (in³, mm³, m³) S_x section modulus with respect to the x-centroidal axis (in³, mm³, m³) - section modulus with respect to the y-centroidal axis (in³, mm³, m³) S_{v} SCslip critical bolted connection SF safety factor (also see F.S.) S4S surface-four-sided thickness (in, mm, m); time (sec, hrs) thickness of the flange of a steel beam cross section (in, mm, m) t_f thickness of the web of a steel beam cross section (in, mm, m) t_w Ttension label; tensile force (lb, kip, N, kN); torque (lb-ft, kip-ft, N-m, kN-m); throat size of a weld (in, mm); effect of thermal load for LRFD design Ushear lag factor for bolted connections reduction coefficient for block shear rupture U_{bs} velocity (ft/sec, m/sec, mi/h); shear force per unit length (lb/ft, k/ft, N/m, kN/m) (see q) Vshear force (lb, kip, N, kN) required shear in steel ASD design (unified) (lb, kip, N, kN) V_a V_c shear force capacity in concrete (lb, kip, N, kN) V_n nominal shear force capacity for concrete design (lb, kip, N, kN) V_{s} shear force capacity in steel (lb, kip, N, kN) V_u factored shear calculated in concrete design from load factors (lb, kip, N, kN) V_{u1} factored one-way shear calculated in concrete footing design from load factors (lb, kip, N, kN) V_{u2} factored two-way shear calculated in concrete footing design from load factors (lb, kip, N, kN) load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m); w load per unit area on a surface (lb/ft², kip/ft², N/m², kN/m²): width dimension (in, ft, mm, m) weight of reinforced concrete per unit volume (lb/ft³, N/m³) W_c factored load per unit length on a beam from load factors (lb/ft, kip/ft, N/m, kN/m); W_{u} factored load per unit area on a surface from load factors (lb/ft², kip/ft², N/m², kN/m²) Wweight (lb, kip, N, kN); total load from a uniform distribution (lb, kip, N, kN); wind load for LRFD design a distance in the x direction (in, ft, mm, m) х - mm) the distance in the x direction from a reference axis to the centroid of a composite shape (in, the distance in the x direction from a reference axis to the centroid of a shape (in, mm) \bar{x} \hat{x} - X bearing-type connection with bolt threads excluded from shear plane - y a distance in the y direction (in, ft, mm, m); distance from the neutral axis to the y-level of a beam cross section (in, mm) - \overline{y} the distance in the y direction from a reference axis to the centroid of a shape (in, mm) - \hat{y} the distance in the y direction from a reference axis to the centroid of a composite shape (in, mm) - the distance from a unit area to a reference axis (in, ft, mm, m) (also see d_x and d_y) - Z plastic section modulus of a steel beam (in³, mm³) lateral design value for a single fastener in a timber connection (lb/nail, k/bolt) - ' symbol for feet - " symbol for inches - # symbol for pounds - = symbol for equal to - \approx symbol for approximately equal to - ∞ symbol for proportional to - \leq symbol for less than or equal to - symbol for integration - α coefficient of thermal expansion (/°C, /°F); angle, in a math equation (degrees, radians) - β angle, in a math equation (degrees, radians) - β_c ratio of long side to short side of the column in concrete footing design - β_1 coefficient to determine the stress block height in concrete beam design - δ elongation (in, mm) (also see e) - δ_{P} elongation due to axial load (in, mm) - δ_s shear deformation (in, mm) - δ_{τ} elongation due to change in temperature (in, mm) - Δ beam deflection (in, mm); an increment - Δ_{ii} beam deflection due to live load (in, mm) - Δ_{max} maximum calculated beam deflection (in, mm) - Δ_{77} beam deflection due to total load (in, mm) - $\Delta_{\rm r}$ beam deflection in beam diagrams and formulas (in, mm) - ΔT change in temperature (°C, °F) - ε strain (also see s) - ε_t thermal strain φ diameter symbol; angle of twist (degrees, radians); resistance factor in LRFD steel design and reinforced concrete design resistance factor for flexure in LRFD design ϕ_{h} resistance factor for compression in LRFD design ϕ_c resistance factor for tension in LRFD design ϕ_{t} resistance factor for shear in LRFD design ϕ_{v} design constant for slenderness evaluation for steel columns in LRFD design λ_c Poisson's ratio; μ coefficient of static friction specific gravity of a material (lb/in³, lb/ft³, N/m³,kN/m³); γ angle, in a math equation (degrees, radians); shearing strain (no units); load factor in LRFD design dead load factor in LRFD steel design γ_D live load factor in LRFD steel design γ_I θ angle, in a trig equation (degrees, radians); slope of the deflection of a beam at a point (degrees, radians) pi (180°) π radial distance (in, mm); ρ radius of curvature in beam deflection relationships (ft, m); reinforcement ratio in concrete beam design = A_s/bd (or possibly A_s/bt , A_s/bh) (no units) balanced reinforcement ratio in concrete beam design ρ_b reinforcement ratio in concrete column design = A_{st}/A_{g} ρ_{g} maximum reinforcement ratio allowed in concrete beam design for ductile behavior ρ_{max} engineering symbol for normal stress (axial or bending) σ engineering symbol for shearing stress τ shearing stress capacity in concrete design (psi; ksi, kPa, MPa) ν_c load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m) (see w); ω load per unit area (lb/ft², kips/ft², N/m², Pa, MPa) Σ summation symbol Ω safety factor for ASD of steel (unified) relative stiffness of columns to beams in a rigid connection (see G) Ψ