ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN ARCH 614 DR. ANNE NICHOLS SPRING 2014

lecture SEVEN

shear & bending moment diagrams

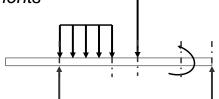
V & M Diagrams 1 Lecture 7 Elements of Architectural Structures ARCH 614 S2009abn

Semigraphical Method

- by knowing
 - area under loading curve = change in V
 - area under shear curve = change in M
 - concentrated forces cause "jump" in V
 - concentrated moments cause "jump" in M

$$V_D - V_C = -\int_C^{X_D} w dx \qquad M_D - M_C = \int_C^{X_D} V dx$$

$$X_C$$


V & M Diagrams 6 Lecture 13 Elements of Architectural Structures ARCH 614 S2004abn

Equilibrium Method

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads

concentrated moments

- free ends
 - zero forces

V & M Diagrams 5 Lecture 13 Elements of Architectural Structures ARCH 614 S2004abn

Semigraphical I

relationships

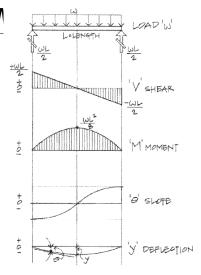
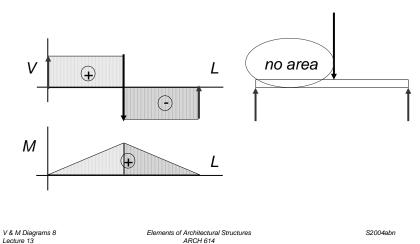
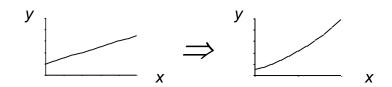



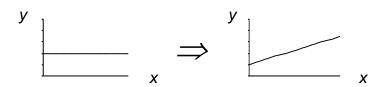
Figure 7.11 Relationship of load, shear, Elemer moment, slope, and deflection diagrams.

2004abn


Semigraphical Method

• M_{max} occurs where V = 0 (calculus)

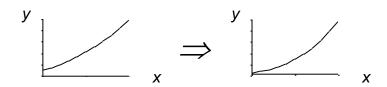
Curve Relationships


• line with slope, integrates to parabola

· ex: load to shear, shear to moment

Curve Relationships

- integration of functions
- line with 0 slope, integrates to sloped



· ex: load to shear, shear to moment

V & M Diagrams 9 Lecture 13 Elements of Architectural Structures ARCH 614 S2004abn

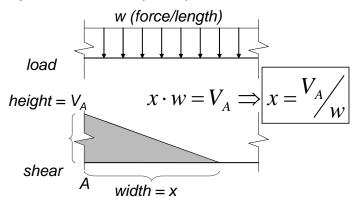
Curve Relationships

• parabola, integrates to 3rd order curve

• ex: load to shear, shear to moment

Basic Procedure

Find reaction forces & moments
 Plot axes, underneath beam load diagram


V.

- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear jumps with concentrated load
- 5. Shear changes with area under load

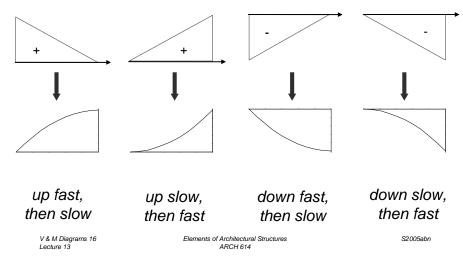
V & M Diagrams 12 Lecture 13 Elements of Architectural Structures ARCH 614 S2004abn

Triangle Geometry

slope of V is w (-w:1)

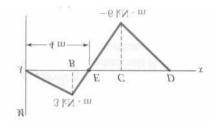
V & M Diagrams 15 Lecture 13 Elements of Architectural Structures ARCH 614 S2005abn

Basic Procedure


M:

- 6. Starting at left
- 7. Moment is 0 at free ends
- 8. Moment jumps with moment
- 9. Moment changes with area under V
- 10. Maximum moment is where shear = 0! (locate where V = 0)

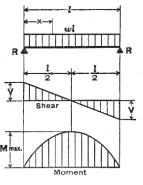
V & M Diagrams 13 Lecture 13 Elements of Architectural Structures ARCH 614 S2004abn


Parabolic Shapes

cases

Deflected Shape & M(x)

- -M(x) gives shape indication
- boundary conditions must be met


Beam Deflection & Design 9 Lecture 19

Flements of Architectural Structures ARCH 614

S2004ahn

Tabulated Beam Formulas

- how to read charts
- 1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

Beam Deflection & Design 21

Total Equiv. Uniform Load . . . = wl

$$R = V$$
 $= \frac{wl}{2}$

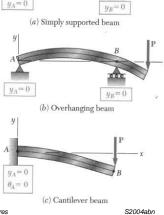
$$V_X$$
 = $w\left(\frac{l}{2} - x^2\right)$

M max. (at center) =
$$\frac{wl^2}{8}$$

$$M_X$$
 $=\frac{wx}{2}(l-x)$

$$\triangle$$
max. (at center) . . . = $\frac{5 wl^4}{384 EI}$

$$\Delta_{X}$$
 = $\frac{w_{X}}{24EI}$ ($l^{3}-2l_{X}^{2}+x^{3}$)


Elements of Architectural Structures ARCH 614

Boundary Conditions

• at pins, rollers, fixed supports: y = 0

- at fixed supports: $\theta = 0$
- at inflection points from symmetry: $\theta = 0$
- y_{max} at $\frac{dy}{dx} = 0$

Beam Deflection & Design 10 Lecture 19

Elements of Architectural Structures ARCH 614